总结
class UF { /* 将 p 和 q 连接 */ public void union(int p, int q); /* 判断 p 和 q 是否连通 */ public boolean connected(int p, int q); /* 返回图中有多少个连通分量 */ public int count(); }
并查集问题,都有一种动态连通性。动态连通性其实就是一种等价关系,具有「自反性」「传递性」和「对称性」,
例如==关系也是一种等价关系,具有这些性质。所以这种问题用 Union-Find 算法就很自然。
必看内容
完整代码:
class UF { // 记录连通分量个数 private int count; // 存储若干棵树 private int[] parent; // 记录树的“重量” private int[] size; public UF(int n) { this.count = n; parent = new int[n]; size = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; size[i] = 1; } } /* 将 p 和 q 连通 */ public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // 小树接到大树下面,较平衡 if (size[rootP] > size[rootQ]) { parent[rootQ] = rootP; size[rootP] += size[rootQ]; } else { parent[rootP] = rootQ; size[rootQ] += size[rootP]; } count--; } /* 判断 p 和 q 是否互相连通 */ public boolean connected(int p, int q) { int rootP = find(p); int rootQ = find(q); // 处于同一棵树上的节点,相互连通 return rootP == rootQ; } /* 返回节点 x 的根节点 */ private int find(int x) { while (parent[x] != x) { // 进行路径压缩 parent[x] = parent[parent[x]]; x = parent[x]; } return x; } public int count() { return count; } }