zoukankan      html  css  js  c++  java
  • Hadoop案例(三)找博客共同好友

    找博客共同好友案例

    1数据准备

    以下是博客的好友列表数据,冒号前是一个用户,冒号后是该用户的所有好友(数据中的好友关系是单向的)

    A:B,C,D,F,E,O
    B:A,C,E,K
    C:F,A,D,I
    D:A,E,F,L
    E:B,C,D,M,L
    F:A,B,C,D,E,O,M
    G:A,C,D,E,F
    H:A,C,D,E,O
    I:A,O
    J:B,O
    K:A,C,D
    L:D,E,F
    M:E,F,G
    O:A,H,I,J
    
    
    
    多对多的关系
    数据库:学生       课程        成绩表    
    学生表和课程表的自然连接
    
    A 1  100  
    A 2  90
    
    A : B
    A : C
    B : C
    
    
    
    A    I,K,C,B,G,F,H,O,D,
    B    A,F,J,E,
    C    A,B
    D    A,B
    
    
    A-B  C,D
    friends.txt

    求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?

    2)需求分析

    求出AB、C….等是好友

    第一次输出结果

    A    I,K,C,B,G,F,H,O,D,
    B    A,F,J,E,
    C    A,E,B,H,F,G,K,
    D    G,C,K,A,L,F,E,H,
    E    G,M,L,H,A,F,B,D,
    F    L,M,D,C,G,A,
    G    M,
    H    O,
    I    O,C,
    J    O,
    K    B,
    L    D,E,
    M    E,F,
    O    A,H,I,J,F,

    第二次输出结果

    A-B    E C 
    A-C    D F 
    A-D    E F 
    A-E    D B C 
    A-F    O B C D E 
    A-G    F E C D 
    A-H    E C D O 
    A-I    O 
    A-J    O B 
    A-K    D C 
    A-L    F E D 
    A-M    E F 
    B-C    A 
    B-D    A E 
    B-E    C 
    B-F    E A C 
    B-G    C E A 
    B-H    A E C 
    B-I    A 
    B-K    C A 
    B-L    E 
    B-M    E 
    B-O    A 
    C-D    A F 
    C-E    D 
    C-F    D A 
    C-G    D F A 
    C-H    D A 
    C-I    A 
    C-K    A D 
    C-L    D F 
    C-M    F 
    C-O    I A 
    D-E    L 
    D-F    A E 
    D-G    E A F 
    D-H    A E 
    D-I    A 
    D-K    A 
    D-L    E F 
    D-M    F E 
    D-O    A 
    E-F    D M C B 
    E-G    C D 
    E-H    C D 
    E-J    B 
    E-K    C D 
    E-L    D 
    F-G    D C A E 
    F-H    A D O E C 
    F-I    O A 
    F-J    B O 
    F-K    D C A 
    F-L    E D 
    F-M    E 
    F-O    A 
    G-H    D C E A 
    G-I    A 
    G-K    D A C 
    G-L    D F E 
    G-M    E F 
    G-O    A 
    H-I    O A 
    H-J    O 
    H-K    A C D 
    H-L    D E 
    H-M    E 
    H-O    A 
    I-J    O 
    I-K    A 
    I-O    A 
    K-L    D 
    K-O    A 
    L-M    E F
    View Code

    3)代码实现

    1)第一次Mapper 

    package com.xyg.mapreduce.friends;
    import java.io.IOException;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    public class OneShareFriendsMapper extends Mapper<LongWritable, Text, Text, Text>{
        
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            // 1 获取一行 A:B,C,D,F,E,O
            String line = value.toString();
            
            // 2 切割
            String[] fileds = line.split(":");
            
            // 3 获取person和好友
            String person = fileds[0];
            String[] friends = fileds[1].split(",");
            
            // 4写出去
            for(String friend: friends){
                // 输出 <好友,人>
                context.write(new Text(friend), new Text(person));
            }
        }
    }

    (2)第一次Reducer 

    package com.xyg.mapreduce.friends;
    import java.io.IOException;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class OneShareFriendsReducer extends Reducer<Text, Text, Text, Text>{
        
        @Override
        protected void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {
            
            StringBuffer sb = new StringBuffer();
            //1 拼接
            for(Text person: values){
                sb.append(person).append(",");
            }
            
            //2 写出
            context.write(key, new Text(sb.toString()));
        }
    }

    (3)第一次Driver 

    package com.xyg.mapreduce.friends;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class OneShareFriendsDriver {
    
        public static void main(String[] args) throws Exception {
            // 1 获取job对象
            Configuration configuration = new Configuration();
            Job job = Job.getInstance(configuration);
            
            // 2 指定jar包运行的路径
            job.setJarByClass(OneShareFriendsDriver.class);
    
            // 3 指定map/reduce使用的类
            job.setMapperClass(OneShareFriendsMapper.class);
            job.setReducerClass(OneShareFriendsReducer.class);
            
            // 4 指定map输出的数据类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Text.class);
            
            // 5 指定最终输出的数据类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            
            // 6 指定job的输入原始所在目录
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            
            // 7 提交
            boolean result = job.waitForCompletion(true);
            
            System.exit(result?1:0);
        }
    }

    (4)第二次Mapper 

    package com.xyg.mapreduce.friends;
    import java.io.IOException;
    import java.util.Arrays;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    public class TwoShareFriendsMapper extends Mapper<LongWritable, Text, Text, Text>{
        
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            // A I,K,C,B,G,F,H,O,D,
            // 友 人,人,人
            String line = value.toString();
            String[] friend_persons = line.split("	");
    
            String friend = friend_persons[0];
            String[] persons = friend_persons[1].split(",");
    
            Arrays.sort(persons);
    
            for (int i = 0; i < persons.length - 1; i++) {
                
                for (int j = i + 1; j < persons.length; j++) {
                    // 发出 <人-人,好友> ,这样,相同的“人-人”对的所有好友就会到同1个reduce中去
                    context.write(new Text(persons[i] + "-" + persons[j]), new Text(friend));
                }
            }
        }
    }

    (5)第二次Reducer 

    package com.xyg.mapreduce.friends;
    import java.io.IOException;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class TwoShareFriendsReducer extends Reducer<Text, Text, Text, Text>{
        
        @Override
        protected void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {
            
            StringBuffer sb = new StringBuffer();
    
            for (Text friend : values) {
                sb.append(friend).append(" ");
            }
            
            context.write(key, new Text(sb.toString()));
        }
    }

    (6)第二次Driver 

    package com.xyg.mapreduce.friends;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class TwoShareFriendsDriver {
    
        public static void main(String[] args) throws Exception {
            // 1 获取job对象
            Configuration configuration = new Configuration();
            Job job = Job.getInstance(configuration);
            
            // 2 指定jar包运行的路径
            job.setJarByClass(TwoShareFriendsDriver.class);
    
            // 3 指定map/reduce使用的类
            job.setMapperClass(TwoShareFriendsMapper.class);
            job.setReducerClass(TwoShareFriendsReducer.class);
            
            // 4 指定map输出的数据类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Text.class);
            
            // 5 指定最终输出的数据类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            
            // 6 指定job的输入原始所在目录
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            
            // 7 提交
            boolean result = job.waitForCompletion(true);
            
            System.exit(result?1:0);
        }
    }
  • 相关阅读:
    C++ Compress Floder
    C语言: 两个int变量相除,结果保留两位小数
    过滤Windows文件名中的非法字符
    判断两个vector是否相等
    顶级操盘手是怎样准确把握入场时机的
    短线黑马选股绝技
    短线黑马选股绝技 一
    每日一招:短线炒股实用技巧
    高抛低吸T+0操作要领(目前行情短线炒作的必备技能)
    如何买开盘即涨停的个股
  • 原文地址:https://www.cnblogs.com/frankdeng/p/9255931.html
Copyright © 2011-2022 走看看