zoukankan      html  css  js  c++  java
  • 数据--第35课

    第35课 - 创建二叉树

    1. 指路法定位结点

    从根节点开始。。。

    结点1的位置:{NUll}

    结点2的位置:{左}

    结点3的位置:{右}

    结点4的位置:{左,左}

    结点5的位置:{左,右}

    结点6的位置:{右,左}

    结点7的位置:{右,右}

    结点8的位置:{左,左,左}

    结点9的位置:{左,左,右}

    结点10的位置:{左,右,左}

    指路法通过根结点与目标结点的相对位置进行定位。

    指路法可以避开二叉树递归的性质“线性”定位。

    思想:在C语言中可以利用bit位进行指路。

    #define BT_LEFT 0

    #define BT_RIGHT 1

    typedef unsigned long long BTP0s;

    2. 二叉树存储结构

    用结构体来定义二叉树中的指针域。

    二叉树的头结点也可以用结构体实现。

    3. 二叉树的操作

    (1)定位

    while((count > 0)&&(current != NULL))

    {

             bit = pos &1;

             pos = pos >>1;

             count--;

             parent = current;

             if( bit == BT_LEFT)

             {

                      current = current->left;  

             }

             else if( bit == BT_RIGHT)

             {

                      current = current->right;

             }

    }

    技巧:利用二进制中的0和1分别代表left和right。

          位运算是实现指路法的基础。

    4. 程序

    main.c

    #include <stdio.h>

    #include <stdlib.h>

    #include "BTree.h"

    /* run this program using the console pauser or add your own getch, system("pause") or input loop */

    struct Node

    {

        BTreeNode header;

        char v;

    };

    void printf_data(BTreeNode* node)

    {

        if( node != NULL )

        {

            printf("%c", ((struct Node*)node)->v);

        }

    }

    int main(int argc, char *argv[])

    {

        BTree* tree = BTree_Create();

       

        struct Node n1 = {{NULL, NULL}, 'A'};

        struct Node n2 = {{NULL, NULL}, 'B'};

        struct Node n3 = {{NULL, NULL}, 'C'};

        struct Node n4 = {{NULL, NULL}, 'D'};

        struct Node n5 = {{NULL, NULL}, 'E'};

        struct Node n6 = {{NULL, NULL}, 'F'};

       

        BTree_Insert(tree, (BTreeNode*)&n1, 0, 0, 0);

        BTree_Insert(tree, (BTreeNode*)&n2, 0x00, 1, 0);

        BTree_Insert(tree, (BTreeNode*)&n3, 0x01, 1, 0);

        BTree_Insert(tree, (BTreeNode*)&n4, 0x00, 2, 0);

        BTree_Insert(tree, (BTreeNode*)&n5, 0x02, 2, 0);

        BTree_Insert(tree, (BTreeNode*)&n6, 0x02, 3, 0);

       

        printf("Height: %d ", BTree_Height(tree));

        printf("Degree: %d ", BTree_Degree(tree));

        printf("Count: %d ", BTree_Count(tree));

        printf("Position At (0x02, 2): %c ", ((struct Node*)BTree_Get(tree, 0x02, 2))->v);

        printf("Full Tree: ");

       

        BTree_Display(tree, printf_data, 4, '-');

       

        BTree_Delete(tree, 0x00, 1);

       

        printf("After Delete B: ");

        printf("Height: %d ", BTree_Height(tree));

        printf("Degree: %d ", BTree_Degree(tree));

        printf("Count: %d ", BTree_Count(tree));

        printf("Full Tree: ");

       

        BTree_Display(tree, printf_data, 4, '-');

       

        BTree_Clear(tree);

       

        printf("After Clear: ");

        printf("Height: %d ", BTree_Height(tree));

        printf("Degree: %d ", BTree_Degree(tree));

        printf("Count: %d ", BTree_Count(tree));

       

        BTree_Display(tree, printf_data, 4, '-');

       

        BTree_Destroy(tree);

       

           return 0;

    }

     

    BTree.h

    #ifndef _BTREE_H_

    #define _BTREE_H_

    #define BT_LEFT 0

    #define BT_RIGHT 1

    typedef void BTree;

    typedef unsigned long long BTPos;

    typedef struct _tag_BTreeNode BTreeNode;

    struct _tag_BTreeNode

    {

        BTreeNode* left;

        BTreeNode* right;

    };

    typedef void (BTree_Printf)(BTreeNode*);

    BTree* BTree_Create();

    void BTree_Destroy(BTree* tree);

    void BTree_Clear(BTree* tree);

    int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag);

    BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count);

    BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count);

    BTreeNode* BTree_Root(BTree* tree);

    int BTree_Height(BTree* tree);

    int BTree_Count(BTree* tree);

    int BTree_Degree(BTree* tree);

    void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div);

    #endif

     

    BTree.c

    #include <stdio.h>

    #include <malloc.h>

    #include "BTree.h"

    typedef struct _tag_BTree TBTree;

    struct _tag_BTree

    {

        int count;

        BTreeNode* root;

    };

    static void recursive_display(BTreeNode* node, BTree_Printf* pFunc, int format, int gap, char div) // O(n)

    {

        int i = 0;

       

        if( (node != NULL) && (pFunc != NULL) )

        {

            for(i=0; i<format; i++)

            {

                printf("%c", div);

            }

           

            pFunc(node);

           

            printf(" ");

           

            if( (node->left != NULL) || (node->right != NULL) )

            {

                recursive_display(node->left, pFunc, format + gap, gap, div);

                recursive_display(node->right, pFunc, format + gap, gap, div);

            }

        }

        else

        {

            for(i=0; i<format; i++)

            {

                printf("%c", div);

            }

            printf(" ");

        }

    }

    static int recursive_count(BTreeNode* root) // O(n)

    {

        int ret = 0;

       

        if( root != NULL )

        {

            ret = recursive_count(root->left) + 1 + recursive_count(root->right);

        }

       

        return ret;

    }

    static int recursive_height(BTreeNode* root) // O(n)

    {

        int ret = 0;

       

        if( root != NULL )

        {

            int lh = recursive_height(root->left);

            int rh = recursive_height(root->right);

            

            ret = ((lh > rh) ? lh : rh) + 1;

        }

       

        return ret;

    }

    static int recursive_degree(BTreeNode* root) // O(n)

    {

        int ret = 0;

       

        if( root != NULL )

        {

            if( root->left != NULL )

            {

                ret++;

            }

           

            if( root->right != NULL )

            {

                ret++;

            }

           

            if( ret == 1 )

            {

                int ld = recursive_degree(root->left);

                int rd = recursive_degree(root->right);

               

                if( ret < ld )

                {

                    ret = ld;

                }

               

                if( ret < rd )

                {

                    ret = rd;

                }

            }

        }

       

        return ret;

    }

    BTree* BTree_Create() // O(1)

    {

        TBTree* ret = (TBTree*)malloc(sizeof(TBTree));

       

        if( ret != NULL )

        {

            ret->count = 0;

            ret->root = NULL;

        }

       

        return ret;

    }

    void BTree_Destroy(BTree* tree) // O(1)

    {

        free(tree);

    }

    void BTree_Clear(BTree* tree) // O(1)

    {

        TBTree* btree = (TBTree*)tree;

       

        if( btree != NULL )

        {

            btree->count = 0;

            btree->root = NULL;

        }

    }

    int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag) // O(n)

    {

        TBTree* btree = (TBTree*)tree;

        int ret = (btree != NULL) && (node != NULL) && ((flag == BT_LEFT) || (flag == BT_RIGHT));

        int bit = 0;

       

        if( ret )

        {

            BTreeNode* parent = NULL;

            BTreeNode* current = btree->root;

           

            node->left = NULL;

            node->right = NULL;

           

            while( (count > 0) && (current != NULL) )

            {

                bit = pos & 1;

                pos = pos >> 1;

               

                parent = current;

               

                if( bit == BT_LEFT )

                {

                    current = current->left;

                }

                else if( bit == BT_RIGHT )

                {

                    current = current->right;

                }

               

                count--;

            }

           

            if( flag == BT_LEFT )

            {

                node->left = current;

            }

            else if( flag == BT_RIGHT )

            {

                node->right = current;

            }

           

            if( parent != NULL )

            {

                if( bit == BT_LEFT )

                {

                    parent->left = node;

                }

                else if( bit == BT_RIGHT )

                {

                    parent->right = node;

                }

            }

            else

            {

                btree->root = node;

            }

           

            btree->count++;

        }

       

        return ret;

    }

    BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count) // O(n)

    {

        TBTree* btree = (TBTree*)tree;

        BTreeNode* ret = NULL;

        int bit = 0;

       

        if( btree != NULL )

        {

            BTreeNode* parent = NULL;

            BTreeNode* current = btree->root;

            

            while( (count > 0) && (current != NULL) )

            {

                bit = pos & 1;

                pos = pos >> 1;

               

                parent = current;

               

                if( bit == BT_LEFT )

                {

                    current = current->left;

                }

                else if( bit == BT_RIGHT )

                {

                    current = current->right;

                }

               

                count--;

            }

           

            if( parent != NULL )

            {

                if( bit == BT_LEFT )

                {

                    parent->left = NULL;

                }

                else if( bit == BT_RIGHT )

                {

                    parent->right = NULL;

                }

            }

            else

            {

                btree->root = NULL;

            }

           

            ret = current;

           

            btree->count = btree->count - recursive_count(ret);

        }

       

        return ret;

    }

    BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count) // O(n)

    {

        TBTree* btree = (TBTree*)tree;

        BTreeNode* ret = NULL;

        int bit = 0;

       

        if( btree != NULL )

        {

            BTreeNode* current = btree->root;

           

            while( (count > 0) && (current != NULL) )

            {

                bit = pos & 1;

                pos = pos >> 1;

               

                if( bit == BT_LEFT )

                {

                    current = current->left;

                }

                else if( bit == BT_RIGHT )

                {

                    current = current->right;

                }

               

                count--;

            }

           

            ret = current;

        }

       

        return ret;

    }

    BTreeNode* BTree_Root(BTree* tree) // O(1)

    {

        TBTree* btree = (TBTree*)tree;

        BTreeNode* ret = NULL;

       

        if( btree != NULL )

        {

            ret = btree->root;

        }

       

        return ret;

    }

    int BTree_Height(BTree* tree) // O(n)

    {

        TBTree* btree = (TBTree*)tree;

        int ret = 0;

       

        if( btree != NULL )

        {

            ret = recursive_height(btree->root);

        }

       

        return ret;

    }

    int BTree_Count(BTree* tree) // O(1)

    {

        TBTree* btree = (TBTree*)tree;

        int ret = 0;

       

        if( btree != NULL )

        {

            ret = btree->count;

        }

       

        return ret;

    }

    int BTree_Degree(BTree* tree) // O(n)

    {

        TBTree* btree = (TBTree*)tree;

        int ret = 0;

       

        if( btree != NULL )

        {

            ret = recursive_degree(btree->root);

        }

       

        return ret;

    }

    void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div) // O(n)

    {

        TBTree* btree = (TBTree*)tree;

       

        if( btree != NULL )

        {

            recursive_display(btree->root, pFunc, 0, gap, div);

        }

    }

    小结:

    二叉树在结构上不依赖组织链表。

    通过指路法可以方便的定位二叉树中的结点。

    基于指路法的二叉树在插入、删除和获取操作的实现细节上与单链表相似。

    单链表就是特殊的额二叉树,实现上当然相似,只是更简单而已。

  • 相关阅读:
    Shell命令之文本操作
    乘法表
    万年历
    猜数游戏
    Linux下如何进行FTP安装与设置
    CentOS 安装nload(流量统计)
    linux下创建用户并且限定用户主目录
    ftp 解决不能上传问题
    【题解】[TJOI2018]数学计算
    【平衡树做题记录】
  • 原文地址:https://www.cnblogs.com/free-1122/p/11336047.html
Copyright © 2011-2022 走看看