zoukankan      html  css  js  c++  java
  • [Leetcode 105] 90 Subsets II

    Problem:

    Given a collection of integers that might contain duplicates, S, return all possible subsets.

    Note:

    • Elements in a subset must be in non-descending order.
    • The solution set must not contain duplicate subsets.

    For example,
    If S = [1,2,2], a solution is:

    [
      [2],
      [1],
      [1,2,2],
      [2,2],
      [1,2],
      []
    ]

    Analysis:

    This is a viration of basic DFS. The given int vector contains duplicated elements. To avoid dup-enumeration, we need first sort the given vector so that the enumeration is ordered. Then we need an extra signal array to indicate whether an element is accessed. We pick an element only if 1) it's different from the previous element or 2) it's the same as the previous one but the previous element has already be selected. In this way, we can ensure no duplicated subsets are generated.

    Code:

     1 class Solution {
     2 public:
     3     vector<vector<int> > res;
     4     vector<int> tmp;
     5     int *sig;
     6     int size;
     7 
     8     vector<vector<int> > subsetsWithDup(vector<int> &S) {
     9         // Start typing your C/C++ solution below
    10         // DO NOT write int main() function
    11         res.clear();
    12         tmp.clear();
    13         
    14         size = S.size();
    15         sig = new int[size];
    16         for (int i=0; i<size; i++)
    17             sig[i] = 0;
    18 
    19         std::sort(S.begin(), S.end());
    20         solve(0, S);
    21         
    22         return res;
    23     }
    24     
    25 private:
    26     bool solve(int n, vector<int> &S) {
    27         res.push_back(tmp);
    28 
    29         if (n == size) return true;
    30 
    31         for (int i=n; i<size; i++) {
    32             if ((i==0) || (S[i-1] != S[i]) || (S[i-1] == S[i] && sig[i-1])) {
    33                 sig[i] = 1;
    34                 tmp.push_back(S[i]);
    35                 
    36                 solve(i+1, S);
    37                 
    38                 tmp.pop_back();
    39                 sig[i] = 0;
    40             }
    41         }
    42         
    43         return false;
    44     }
    45 };
    View Code
  • 相关阅读:
    ASP.NET缓存:缓存ASP.NET页
    oracle小技巧:字符串原样输出
    ASP.NET缓存:概述
    如何设计表结构便于treeview显示?
    Delphi VCLSkin 界面美化
    txt文件导入存储过程
    TreeView挺入数据库
    TreeView使用笔记
    TreeView格式
    TreeView学习总结
  • 原文地址:https://www.cnblogs.com/freeneng/p/3251281.html
Copyright © 2011-2022 走看看