zoukankan      html  css  js  c++  java
  • Bayes++ Library入门学习之熟悉class-Importance_resampler

      接下来,需要介绍的是重要性重采样类Bayesian_filter::Improtance_resampler。该类实现了两种重采样方法[1][2],和其子类的继承关系图如下:

      

      其中Standard_resampler的实现来自论文[1]中实现的方法,Systematic_resampler实现了论文[2]提出的方法。

          该算法对应的实现文件为SIRFlt.hpp,这里我们需要注意的是1) SIR algorithm is sensitive to random generator. In particular random uniform must be [0..1) NOT [0..1];2) Quantisation in the random number generator must not approach the sample size. This will result in quantisation of the resampling. For example if random identically equal to 0 becomes highly probable due to quantisation this will result in the first sample being selectively draw whatever its likelihood.

    References
     [1] "Novel approach to nonlinear-non-Guassian Bayesian state estimation".NJ Gordon, DJ Salmond, AFM Smith IEE Proceeding-F Vol.140 No.2 April 1993.
     [2] Building Robust Simulation-based Filter for Evolving Data Sets". J Carpenter, P Clifford, P Fearnhead Technical Report Unversity of Oxford.
  • 相关阅读:
    跟layout_weight说88,轻松搞定百分比布局
    跟闪退、程序崩溃说88
    程序的需求层次
    开博
    第十章 数组与集合 发牌程序 实例代码
    C#面向对象基础01
    winform form
    html
    C#语言基础02
    C#语言基础01
  • 原文地址:https://www.cnblogs.com/freshmen/p/6006502.html
Copyright © 2011-2022 走看看