zoukankan      html  css  js  c++  java
  • Bayes++ Library入门学习之熟悉class-Importance_resampler

      接下来,需要介绍的是重要性重采样类Bayesian_filter::Improtance_resampler。该类实现了两种重采样方法[1][2],和其子类的继承关系图如下:

      

      其中Standard_resampler的实现来自论文[1]中实现的方法,Systematic_resampler实现了论文[2]提出的方法。

          该算法对应的实现文件为SIRFlt.hpp,这里我们需要注意的是1) SIR algorithm is sensitive to random generator. In particular random uniform must be [0..1) NOT [0..1];2) Quantisation in the random number generator must not approach the sample size. This will result in quantisation of the resampling. For example if random identically equal to 0 becomes highly probable due to quantisation this will result in the first sample being selectively draw whatever its likelihood.

    References
     [1] "Novel approach to nonlinear-non-Guassian Bayesian state estimation".NJ Gordon, DJ Salmond, AFM Smith IEE Proceeding-F Vol.140 No.2 April 1993.
     [2] Building Robust Simulation-based Filter for Evolving Data Sets". J Carpenter, P Clifford, P Fearnhead Technical Report Unversity of Oxford.
  • 相关阅读:
    Block编程
    自己写Web服务器(续)
    C# 2.0对现有语法的改进
    使用CDN
    优化网站设计(一):减少请求数
    MongoDB Shell的使用
    memcache 和appfabric
    go语言中几个有趣的特性以及对go的看法
    bpm流程平台
    Socket编程 (异步通讯) (Tcp,Udp)Part2
  • 原文地址:https://www.cnblogs.com/freshmen/p/6006502.html
Copyright © 2011-2022 走看看