Big-O Algorithm Complexity Cheat Sheet 列出了常见的算法的时间和空间复杂度,非常直观。
转载到了这里,大家可以看看。
Good | Fair | Poor |
Searching
Algorithm | Data Structure | Time Complexity | Space Complexity | |||
---|---|---|---|---|---|---|
Average | Worst | Worst | ||||
Depth First Search (DFS) | Graph of |V| vertices and |E| edges | - | O(|E| + |V|) | O(|V|) | ||
Breadth First Search (BFS) | Graph of |V| vertices and |E| edges | - | O(|E| + |V|) | O(|V|) | ||
Binary search | Sorted array of n elements | O(log(n)) | O(log(n)) | O(1) | ||
Linear (Brute Force) | Array | O(n) | O(n) | O(1) | ||
Shortest path by Dijkstra, using a Min-heap as priority queue | Graph with |V| vertices and |E| edges | O((|V| + |E|) log |V|) | O((|V| + |E|) log |V|) | O(|V|) | ||
Shortest path by Dijkstra, using an unsorted array as priority queue | Graph with |V| vertices and |E| edges | O(|V|^2) | O(|V|^2) | O(|V|) | ||
Shortest path by Bellman-Ford | Graph with |V| vertices and |E| edges | O(|V||E|) | O(|V||E|) | O(|V|) |
Sorting
Algorithm | Data Structure | Time Complexity | Worst Case Auxiliary Space Complexity | ||||
---|---|---|---|---|---|---|---|
Best | Average | Worst | Worst | ||||
Quicksort | Array | O(n log(n)) | O(n log(n)) | O(n^2) | O(n) | ||
Mergesort | Array | O(n log(n)) | O(n log(n)) | O(n log(n)) | O(n) | ||
Heapsort | Array | O(n log(n)) | O(n log(n)) | O(n log(n)) | O(1) | ||
Bubble Sort | Array | O(n) | O(n^2) | O(n^2) | O(1) | ||
Insertion Sort | Array | O(n) | O(n^2) | O(n^2) | O(1) | ||
Select Sort | Array | O(n^2) | O(n^2) | O(n^2) | O(1) | ||
Bucket Sort | Array | O(n+k) | O(n+k) | O(n^2) | O(nk) | ||
Radix Sort | Array | O(nk) | O(nk) | O(nk) | O(n+k) |
Data Structures
Data Structure | Time Complexity | Space Complexity | |||||||
---|---|---|---|---|---|---|---|---|---|
Average | Worst | Worst | |||||||
Indexing | Search | Insertion | Deletion | Indexing | Search | Insertion | Deletion | ||
Basic Array | O(1) | O(n) | - | - | O(1) | O(n) | - | - | O(n) |
Dynamic Array | O(1) | O(n) | O(n) | O(n) | O(1) | O(n) | O(n) | O(n) | O(n) |
Singly-Linked List | O(n) | O(n) | O(1) | O(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Doubly-Linked List | O(n) | O(n) | O(1) | O(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Skip List | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n log(n)) |
Hash Table | - | O(1) | O(1) | O(1) | - | O(n) | O(n) | O(n) | O(n) |
Binary Search Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n) |
Cartresian Tree | - | O(log(n)) | O(log(n)) | O(log(n)) | - | O(n) | O(n) | O(n) | O(n) |
B-Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Red-Black Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Splay Tree | - | O(log(n)) | O(log(n)) | O(log(n)) | - | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
AVL Tree | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Heaps
Heaps | Time Complexity | |||||||
---|---|---|---|---|---|---|---|---|
Heapify | Find Max | Extract Max | Increase Key | Insert | Delete | Merge | ||
Linked List (sorted) | - | O(1) | O(1) | O(n) | O(n) | O(1) | O(m+n) | |
Linked List (unsorted) | - | O(n) | O(n) | O(1) | O(1) | O(1) | O(1) | |
Binary Heap | O(n) | O(1) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(m+n) | |
Binomial Heap | - | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | |
Fibonacci Heap | - | O(1) | O(log(n))* | O(1)* | O(1) | O(log(n))* | O(1) |
Graphs
Node / Edge Management | Storage | Add Vertex | Add Edge | Remove Vertex | Remove Edge | Query |
---|---|---|---|---|---|---|
Adjacency list | O(|V|+|E|) | O(1) | O(1) | O(|V| + |E|) | O(|E|) | O(|V|) |
Incidence list | O(|V|+|E|) | O(1) | O(1) | O(|E|) | O(|E|) | O(|E|) |
Adjacency matrix | O(|V|^2) | O(|V|^2) | O(1) | O(|V|^2) | O(1) | O(1) |
Incidence matrix | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|E|) |
Notation for asymptotic growth
letter | bound | growth |
---|---|---|
(theta) Θ | upper and lower, tight[1] | equal[2] |
(big-oh) O | upper, tightness unknown | less than or equal[3] |
(small-oh) o | upper, not tight | less than |
(big omega) Ω | lower, tightness unknown | greater than or equal |
(small omega) ω | lower, not tight | greater than |
[1] Big O is the upper bound, while Omega is the lower bound. Theta requires both Big O and Omega, so that's why it's referred to as a tight bound (it must be both the upper and lower bound). For example, an algorithm taking Omega(n log n) takes at least n log n time but has no upper limit. An algorithm taking Theta(n log n) is far preferential since it takes AT LEAST n log n (Omega n log n) and NO MORE THAN n log n (Big O n log n).SO
[2] f(x)=Θ(g(n)) means f (the running time of the algorithm) grows exactly like g when n (input size) gets larger. In other words, the growth rate of f(x) is asymptotically proportional to g(n).
[3] Same thing. Here the growth rate is no faster than g(n). big-oh is the most useful because represents the worst-case behavior.
In short, if algorithm is __ then its performance is __algorithm | performance |
---|---|
o(n) | < n |
O(n) | ≤ n |
Θ(n) | = n |
Ω(n) | ≥ n |
ω(n) | > n |