zoukankan      html  css  js  c++  java
  • 总结2

    没有offer的一天

    机器学习相关

    概念

    欠拟合 拟合 过拟合

    训练集和测试集:模型在训练集和测试集都表现不好,...

    bias+variance

    bias: 模型刻画的分布(所有可能的训练数据集训出的所有模型的输出平均值(模型的期望))与真实分布的差距
    variance: 不同训练集训练下模型输出值之间的差异

    “偏差-方差分解”说明,泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度所共同决定的。给定学习任务,为了取得好的泛化性能,则需使偏差较小,即能够充分拟合数据,并且使方差较小,即使得数据扰动产生的影响小。

    欠拟合: bias high

    过拟合: variance high

    过拟合: 拟合了噪声和outlier

    bagging and boosting

    bagging: 多个分类器共同决定(完整的决策树), random forest(随机); low variance
    boosting:low bias, adaboost(调整样本权重,e=错误率, (alpha_t = frac{1}{2}ln(frac{1-e}{e})),权重变化 (exp(-alpha_th_t(x)y)), (sgn(sum alpha_t h_t(x))));
    GBDT: 拟合残差,将残差作为下一个学习器的样本的label,继续学习,有shriange收缩的思想; 往往是深度较小的树;不容易并行

    k折交叉验证:
    k较大,训练集的数据量较小,bias小,variance大
    k较小是, variance 比较小, bias比较大

    避免欠拟合:

    1. 更好的特征--与数据的分布相关的具有代表性的特征
    2. 更多的特征--增大输入向量的维度, 增加模型的复杂度

    避免过拟合(降低 variance)

    1. 增大数据集
    2. 减少数据特征(降维,PCA)
    3. 正则化 L1,L2
    4. dropout(以一定的概率丢掉某些神经元)

    L1 和 L2 正则

    1. 增加约束

    L1 正则容易是参数为0,即特征稀疏化;L2正则会是参数变小;都能降低variance

    1. 先验
      L1先验是laplace分布,0附近更为集中
      L2 则是0周围比较集中, gauss分布

    logistic regression

    分类算法,线性分类平面
    sigmoid (h_{ heta} = frac{1}{1+e^{ heta^Tx+b}})(是正例的概率)
    假设是伯努利分布,采用最大似然的方法,连乘
    (L_ heta(x) = prod h_ heta(x)^{y_i}(1-h_ heta(x))^{1-y_i})

    (ln)后,就变成加的形式

    所以我们需要最大化最大似然函数

    郁之相关的是多分类问题的(softmax)函数,(frac{e^x}{e^x+e^y+e^z}); 从(softmax)的角度来看,(w)可以看作(w_1-w_0)

  • 相关阅读:
    Linq之Lambda表达式初步认识
    Linq之Expression高级篇(常用表达式类型)
    nginx: [emerg] bind() to 0.0.0.0:443 failed(98:Address already in use)解决方法
    ubuntu18.04如何查看,关闭,激活虚拟机的防火墙
    Dictionary 不区分大小写
    Zookeeper 3、Zookeeper工作原理(详细)
    查看Navicat已保存数据库密码
    is not allowed to connect to this mysql server
    error while loading shared libraries: libstdc++.so.6: cannot open shared obj
    [转]Linux网络配置命令ifconfig输出信息解析
  • 原文地址:https://www.cnblogs.com/fridayfang/p/14670735.html
Copyright © 2011-2022 走看看