前言
以前粗略的看过设计模式,有的看懂了,有的没看懂,有的看懂了又忘了,有的在写程序时已不知不觉在用了.
总之,现在从头学习一遍,并且开始做笔记,这样记的牢。
以后写程序也要有意识的向设计模式靠拢。
那本经典的《设计模式》准备去买一本,一共有23种设计模式,这里我先研究了5种,后面争取都研究完,例子是C#的,不过对于C++、java、delphi应该都是适用的。
欢迎大家和我讨论!
目录
1.singleton
2.strategy
3.Decorator
4.composite
5.state
1.Singleton
说明:保证类只有一个实例。
实例:
using System; 
class Singleton 
{ 
 private static Singleton singleton = null; 
 public static Singleton Instance() 
 { 
  if (null == singleton) 
  singleton = new Singleton(); 
  return singleton; 
 } 
 private Singleton() 
 { 
 } 
} 
class Application 
{ 
 public static void Main() 
 { 
  Singleton s1 = Singleton.Instance(); 
  //Singleton s2 = new Singleton(); //错误:构造器不可访问 
  Singleton s2 = Singleton.Instance(); 
  if (s1.Equals(s2)) // 引用相等 
  Console.WriteLine("Instances are identical"); 
 } 
} 
/*以下是程序输出结果: 
Instances are identical 
*/ 
2.strategy
说明:利用接口实现方法无关化,客户程序同特定算法实现细节毫无耦合关系。
实例:
using System;
namespace strategy1
{
 /// <summary>
 /// Summary description for Class.
 /// </summary>
 interface Strategy
 {
  bool IsPrime(int n);
 }
 class Miller : Strategy
 {
  public bool IsPrime(int n){
   bool result = false;
   //使用Miller法测试n是否为素数,果真,则更新result值
   Console.WriteLine("Using Miller's algorithm");
   return result;
  }
 }
 class Fermat : Strategy
 {
  public bool IsPrime(int n){
   bool result = false;
   //使用Fermat法测试n是否为素数,果真,则更新result值
   Console.WriteLine("Using Fermat's algorithm");
   return result;
  }
 }
 class Mersenne : Strategy
 {
  public bool IsPrime(int n)
  {
   bool result = false;
   //使用Mersenne法测试n是否为素数,果真,则更新result值
   Console.WriteLine("Using Mersenne's algorithm");
   return result;
  }
 }
 class Primality
 {
  private Strategy strategy;
  public Primality(Strategy s)
  {
   strategy = s;
  }
  public bool Test(int n)
  {
   return strategy.IsPrime(n);
  }
 }
 class Class
 {
  [STAThread]
  static void Main(string[] args)
  {
   Console.Write("Number to be tested: ");
   string input = Console.ReadLine();
   int n = Int32.Parse(input);
   Console.Write("Desired algorithm performance: lo, medium, hi? ");
   input = Console.ReadLine();
   char ch = char.Parse(input);
   Primality prime = null;
   switch (ch)
   {
    case 'l':
    case 'L':
    prime = new Primality(new Miller());
    break;
    case 'm':
    case 'M':
    prime = new Primality(new Fermat());
    break;
    case 'h':
    case 'H':
    prime = new Primality(new Mersenne());
    break;
   }
   if (prime != null)
   {
    bool result = prime.Test(n);
   }
   else
    Console.WriteLine("Bad Choice!");
   Console.ReadLine();
  }
}
}
/*以下是某次测试输出结果: 
Number to be tested:1 
Desired algorithm performance: lo, medium, hi? M 
Using Fermat's algorithm 
*/ 
3.Decorator
说明:通过子类实现功能的灵活扩展。
实例:
using System;
namespace decortation
{
 /// <summary>
 /// Summary description for Class.
 /// </summary>
class FileTransfer
{
 public virtual void Download(string url, byte[] data, int size)
 {
 // 下载文件
 }
 public virtual void Upload(string url, byte[] data, int size)
 {
 // 上传文件
 }
}
class Decorator : FileTransfer 
{
 private FileTransfer ft = new FileTransfer();
 private bool IsAccessAllowed(string url)
 {
  bool result = true;
  // 决定是否对请求的URL访问授权
  return result;
 }
 private void LogAccess(string url)
 {
  // 将URL、时间、用户身份等信息写入数据库
  Console.WriteLine("Logging access to {0}", url);
 }
 public override void Download(string url, byte[] data, int size)
 {
  if (!IsAccessAllowed(url)) return;
  ft.Download(url, data, size);
  LogAccess(url);
 }
 public override void Upload(string url, byte[] data, int size)
 {
  if (!IsAccessAllowed(url)) return;
  ft.Upload(url, data, size);
  LogAccess(url);
 }
}
class Class
{
 public static void Main()
 {
  Console.Write("Enter URL to access: ");
  string url = Console.ReadLine();
  Console.Write("Enable logging and access check? ");
  string input = Console.ReadLine();
  char ch = char.Parse(input);
  bool decoration = (ch == 'y' || ch == 'Y');
  FileTransfer ft = null;
  if (!decoration)
   ft = new FileTransfer();
  else
   ft = new Decorator();
  byte[] buf = new byte[1024];
  ft.Download(url, buf, 1024);
 }
}
}
4.composite
说明:利用接口达到用一致的方式来访问所有对象(这个很常用的)。
实例:
C#示例: 
using System; 
using System.Collections; 
interface Shape 
{ 
void Draw(); 
} 
class Line : Shape 
{ 
private double x1, y1, x2, y2; 
public Line(double x1, double y1, double x2, double y2) 
{ 
this.x1 = x1; 
this.y1 = y1; 
this.x2 = x2; 
this.y2 = y2; 
} 
public void Draw() 
{ 
//从(x1, y1) 到(x2, y2)画一条线 
Console.WriteLine("Drawing a line"); 
} 
} 
class Circle : Shape 
{ 
private double x, y, r; 
public Circle(double x, double y, double radius) 
{ 
this.x = x; 
this.y = y; 
this.r = r; 
} 
public void Draw() 
{ 
//以(x, y)为圆心,r为半径画一个圆 
Console.WriteLine("Drawing a circle"); 
} 
} 
class Drawing : Shape 
{ 
private ArrayList shapes; 
public Drawing() 
{ 
shapes = new ArrayList(); 
} 
public void Add(Shape s) 
{ 
shapes.Add(s); 
} 
public void Draw() 
{ 
IEnumerator enumerator = shapes.GetEnumerator(); 
while (enumerator.MoveNext()) 
((Shape) enumerator.Current).Draw(); 
} 
} 
class Application 
{ 
public static void Main() 
{ 
Shape[] array = new Shape[3]; 
array[0] = new Line(0, 0, 10, 12); 
array[1] = new Circle(2, 3, 5.5); 
Drawing dwg = new Drawing(); 
dwg.Add(new Line(3, 4, 3, 5)); 
dwg.Add(new Circle(5, 6, 7.7)); 
array[2] = dwg; 
// 画出所有的图形,注意:用一致的方式来访问所有对象 
for (int i = 0; i < 3; ++i) 
array[i].Draw(); 
} 
} 
/*以下是程序输出结果: 
Drawing a line 
Drawing a circle 
Drawing a line 
Drawing a circle 
*/ 
5.state
说明:当对象内部状态改变时自动改变它的行为。
实例:
这个实例比较长,我简单说明一下,这是一个自动售货机的例子,客户可以投掷面值5、10、25的硬币,货物价值25。每当客户投了硬币就打印投的钱数和,如果够了25,就提示货物售出。
state是个抽象类,它派生了5、10、15、20、25几种钱数和的类(也就是所有可能的钱数和),由于它们都是从STATE继承的,所以它们都有一个STATE类型的静态成员state作为状态的标识(你可以把它想象成全局变量),每个类都接收投入5、10、25面值的硬币,对应的方法是
public virtual void AddNickel(VendingMachine vm) { } 
public virtual void AddDime(VendingMachine vm) { } 
public virtual void AddQuarter(VendingMachine vm) { } 
虽然方法一样,但是每个类内部实现的状态跃迁是不一样的,比如5元的类,接收10元后state就跃迁到了15元,以此类推。
仔细看看吧,这是一个非常有意思的实例。不过说实话,这样实现程序确实太累了,也许在别的应用中可以降低程序员的负担,不过我还没发现(有的话告诉我)。
另外如果有100种状态,有10种路径,难道每个状态都要继承(100×10)?那coding起来岂不是太累,而且代码不要太长啊,唉,当程序员真不容易啊...
using System; 
abstract class State
{
public virtual void AddNickel(VendingMachine vm) { }
public virtual void AddDime(VendingMachine vm) { }
public virtual void AddQuarter(VendingMachine vm) { }
protected virtual void ChangeState(VendingMachine vm, State s)
{
vm.ChangeState(s);
}
}
class VendingMachine
{
private State state;
public VendingMachine()
{
Console.WriteLine("The Vending Machine is now online: product costs 25c");
state = Start.Instance();
}
public void ChangeState(State to)
{
state = to;
}
public void Vend()
{
// 发饮料
Console.WriteLine("Dispensing product...Thank you!");
}
public void AddNickel()
{
state.AddNickel(this);
}
public void AddDime()
{
state.AddDime(this);
}
public void AddQuarter()
{
state.AddQuarter(this);
}
}
class Start : State
{
private static State state = new Start();
private Start()
{
}
public static State Instance()
{
// singleton逻辑
Console.WriteLine("Credit: 0c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
ChangeState(vm, Five.Instance());
}
public override void AddDime(VendingMachine vm)
{
ChangeState(vm, Ten.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
}
}
class Five : State
{
private static State state = new Five();
private Five()
{
}
public static State Instance()
{
// singleton 逻辑
Console.WriteLine("Credit: 5c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
ChangeState(vm, Ten.Instance());
}
public override void AddDime(VendingMachine vm)
{
ChangeState(vm, Fifteen.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance()); // no change returned :-)
}
}
class Ten : State
{
private static State state = new Ten();
private Ten()
{
}
public static State Instance()
{
// singleton 逻辑
Console.WriteLine("Credit: 10c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
ChangeState(vm, Fifteen.Instance());
}
public override void AddDime(VendingMachine vm)
{
ChangeState(vm, Twenty.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance()); // no change returned :-)
}
}
class Fifteen : State
{
private static State state = new Fifteen();
private Fifteen()
{
}
public static State Instance()
{
// singleton 逻辑
Console.WriteLine("Credit: 15c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
ChangeState(vm, Twenty.Instance());
}
public override void AddDime(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance()); // no change returned :-)
}
}
class Twenty : State
{
private static State state = new Twenty();
private Twenty()
{
}
public static State Instance()
{
// singleton 逻辑
Console.WriteLine("Credit: 20c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance());
}
public override void AddDime(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance()); // no change returned :-)
}
}
class Application
{
public static void Main()
{
int coin = 0;
string input = null;
VendingMachine vm = new VendingMachine();
while (true)
{
Console.Write("Insert a coin (5, 10, 25): ");
input = Console.ReadLine();
coin = Int32.Parse(input);
switch (coin)
{
case 5:
vm.AddNickel();
break;
case 10:
vm.AddDime();
break;
case 25:
vm.AddQuarter();
break;
default:
break;
}
}
}
}
/*以下是某次运行时输出结果:
The Vending Machine is now online: product costs 25c
Credit: 0c
Insert a coin <5, 10, 25>: 5
Credit: 5c
Insert a coin <5, 10, 25>: 10
Credit: 15c
Insert a coin <5, 10, 25>: 5
Credit: 20c
Insert a coin <5, 10, 25>: 5
Dispensing product...Thank you!
*/