函数的凸性
1.设(f)是一个下凸函数,且满足(lim_limits{x o-infty} f(x) = -infty)
证明必有 (lim_limits{x o+infty} f(x) = +infty)
证明:假设 (exists M > 0,forall X > 0,s.t. x > X, f(x) < M),由下凸函数定义得:
当(lambda = frac{1}{2},y = -x时, f(frac{x+y}{2}) le frac{1}{2}f(x) +frac{1}{2}f(y)).
即(f(0) le frac{1}{2}f(x) + frac{1}{2}f(-x))
(lim_limits{x o+infty}f(0)) (le) (lim_limits{x o+infty} frac{1}{2} f(x)) (+) (lim_limits{x o+infty} frac{1}{2} f(-x)) (<) (M).
与条件矛盾,故(lim_limits{x o+infty}f(x) = +infty).
2.设(f, g)是下凸函数, 且(g)单调递增,证明(h = gcirc f)是下凸函数
证明:f下凸 (
ightarrow) 对(forall x_1, x_2 in I tin(0,1))有
(f[tx_1+(1-t)x_2] le tf(x_1)+(1-t)f(x_2)) 又因为(g(x))单调递增,则
(g(f[tx_1+(1-t)x_2]) le g(f(x_1)+(1-t)f(x_2)) le tg(f(x_1)) + (1-t) g(f(x_2)))
故(h(x) = g(f(x)))下凸
3.(下凸函数的几种等价叙述) (x_1 <x_2 < x_3), (x_1, x_2, x_3in I)
i) (f(x))在(I)是下凸函数
ii) (frac{f(x_2)-f(x_1)}{x_2-x_1} le frac{f(x_3)-f(x_1)}{x_3-x_1})
iii) (frac{f(x_3)-f(x_1)}{x_3-x_1} le frac{f(x_3)-f(x_2)}{x_3-x_2})
iv) (frac{f(x_2)-f(x_1)}{x_2-x_1} le frac{f(x_3)-f(x_2)}{x_3-x_2})
v) 曲线y = f(x)上三点 (A(x_1, f(x_1)), B(x_2, f(x_2)), C(x_3,f(x_3)))所围的有向面积
(frac{1}{2}egin{vmatrix}1&x_1&f(x_1)\1&x_2&f(x_2)\1&x_3&f(x_3)end{vmatrix} ge 0)
vi) (forall x_0 in I, exists alpha in R, s.t. forall x in I)有
(f(x) ge alpha(x-x_0) + f(x_0))
证明以上定义等价
证明:
由i)得: (f[tx_1+(1-t)x_2] le tf(x_1)+(1-t)f(x_2))
由ii)得:(f(x_2) le frac{x_2-x_1}{x_3-x_1}f(x_3)+frac{x_3-x_2}{x_3-x_1}f(x_1))
令(lambda = frac{x_2-x_1}{x_3-x_1}) 则 (i Rightarrow ii) 反之令(x_2 - lambda x_3 + (1-lambda)x_1) =则(i Leftarrow ii)
iii) iv)同理
由ii)得:((x_3-x_2)f(x_1)+(x_1-x_3)f(x_2)+(x_2-x_1)f(x_3) ge 0)
即(egin{vmatrix}1&x_1&f(x_1)\1&x_2&f(x_2)\1&x_3&f(x_3)end{vmatrix} ge 0)(ii) Rightarrow iii))
因(f(X))为下凸函数,则(F(x) = frac{f(x)-f(x_0)}{x-x_0},(x_0 in I))单调递增
故(forall alpha ge f'(x_0)),当(x < x_0)时,(f(x) le alpha(x-x_0)+f(x_0))
同理(forall alpha le f'(x_0)),当(x > x_0)时,(f(x) le alpha(x-x_0)+f(x_0))
故i)(Rightarrow)vi)
设(x_1<x_2<x_3 in I, exists alpha s.t. f(x) ge alpha(x-x_2)+f(x_2), forall x in I)
分别将(x_1, x_3)代入得(frac{f(x_3)-f(x_2)}{x_3-x_2} ge alpha ge frac{f(x_1)-f(x_2)}{x_1-x_2})
vi)(Rightarrow)i)
4.证明:取(lambda = frac{x-a}{b-a}, lambda in (0,1)),则 (x = lambda b + (1-lambda)a)
由于(exists M s.t. f(a) le M, f(b) le M)
即(f(x) le lambda f(b) + (1 - lambda)f(a) le lambda M + (1 - lambda)M = M)
即(exists M s.t. f(x) le M) (f(x)) 有上界
设(c = frac{a + b}{2} ,f(c) le frac{f(x_1)+f(x_2)}{2} le frac{1}{2}f(x_1)+frac{1}{2}M (frac{x_1+x_2}{2} = c))
(forall x in [a, b], f(x) ge 2f(x)-M)
故(f(x))有下界
(2)设有(h)充分小(s.t.)([alpha-h, eta+h] subset (a, b), forall x_1, x_2 in [alpha, eta], x_3 = x_2 + b), 令(x_1 < x_2)
则(frac{f(x_2)-f(x_1)}{x_2-x_1} le frac{f(x_3)-f(x_2)}{x_3-x_2} le frac{M-m}{b})
(|f(x_2)-f(x_1)| le frac{M-m}{b}|x_1-x_2|)
令(L = frac{M-m}{b}), 则(|f(x_1)-f(x_2)| le L|x_1-x_2|)
中值定理的应用
1.
证明:(1)设(f(x)in C[0, +infty)),且在([0, +infty))上可导,则
(forall x in [0, +infty), exists xi in (0, x), s.t. f(x) = (1+xi)ln(1+x)f'(xi)).
(frac{f(x)}{ln(1+x)} = (1+xi)f'(xi)).
由柯西中值定理:(exists xi in (0, x) s.t. frac{f(x)-f(0)}{g(x)-g(0)} = frac{f(x)}{ln(1+x)} = frac{f'(xi)}{g'(xi)} = (1+xi)f'(xi))
(2) 设(f(x))在([frac{3 pi}{4}, frac{7 pi}{4}])上可导,且(f(frac{3pi}{4}) = 0, f(frac{7pi}{4}) = 0)
则存在 (xi in (frac{3pi}{4}, frac{7 pi}{4}) s.t. f(xi) + f'(xi) = cos xi)
令(F(x) = e^x(f(x) - frac{cosx+sinx}{2}))
(exists xi in(frac{3 pi}{4}, frac{7 pi}{4}), s.t. F'(xi) = frac{F(frac{7 pi}{4}) - F(frac{3 pi}{4})}{pi} = 0 Rightarrow f(xi) + f'(xi) = cos xi)
2.
解:
(lim_limits{x o 0}(frac{1}{x^2}-frac{cotx}{x}) \ =lim_limits{x o 0} frac{simx - xcosx}{x^2sinx} \ = lim_limits{x o 0}frac{xsinx}{2xsinx+x^2cosx} \ = lim_limits{x o 0}frac{cosx}{3cosx-xsinx} \ =lim_limits{x o 0}frac{1}{3-xtanx} = frac{1}{3})
(lim_limits{x o +infty}e^{2x}(frac{e^x+e^{-x}}{e^x-e^{-x}}) \ =lim_limits{x o +infty}(frac{t^2+1}{t^2-1})^{t^2} \ = lim_limits{x o +infty}(1+frac{2}{t^2-1})^{t^2 cdot frac{t^2-1}{2} cdot frac{2}{t^2-1}} \ =e^2)