matlab中有newpnn这样一个函数,不过help里说的不够清楚,help里是这么说的
% net = newpnn(P,T,spread) takes two or three arguments, P
% R-by-Q matrix of Q input vectorsT
% S-by-Q matrix of Q target class vectors spread
% Spread of radial basis functions (default = 0.1)
其实这里 Q 是样本数, S 类数(即训练数据有几个类号), R 特征数
给一个可以跑得通的样例,用UCI的iris数据,把类号从字符串转为1,2,3,可以在这里下载
load bezdekIris.data [row, col] = size(bezdekIris); indices = crossvalind('HoldOut', row, 0.2);%hold out 20% for test, there are 120 logical '1' in indices trains = bezdekIris(indices,:); tests = bezdekIris(~indices,:); % net = newpnn(P,T,spread) takes two or three arguments, P % R-by-Q matrix of Q input vectorsT % S-by-Q matrix of Q target class vectors spread % Spread of radial basis functions (default = 0.1) % Q is num of samples, S is num of classes, R is num of features net = newpnn(trains(:,1:col-1)',ind2vec(trains(:,end)'),0.1); %和通常的分类器不一样,这里的第一个参数要求每一列是一个样本,所以要转置,而且第二个参数也不能直接给一个类号的向量 %要用ind2vec转换一下 Y = sim(net,tests(:,1:col-1)'); predictions = vec2ind(Y); fprintf('accuracy is %f\n', sum(tests(:,end) == predictions') / size(tests, 1))
多次运行的结果可能略有不同