zoukankan      html  css  js  c++  java
  • Python学习---进程 1225

    进程创建

    进程创建:

          第一种:直接创建

          第二种;利用类来实现

    第一种:直接创建

    from multiprocessing import Process
    import time
    def f(name):
        time.sleep(2)
        print('hello', name, time.ctime())
    if __name__ == '__main__':
        li = []
        for i in range(13):  # 文件内有4个进程,同时并发工作:主进程 + 3个进程
            p = Process(target=f, args=('world',))  # 创建进程对象
            li.append(p)
            p.start()
        for i in li:
            i.join()
        print('end')

    image

    第二种;利用类来实现

    import time
    from multiprocessing import  Process
    class MyProcess(Process):
        # def __init__(self, name):  默认有名字
        def __init__(self):
            super(MyProcess, self).__init__()
            # self.name = name
        def run(self):
            time.sleep(1)
            print('hello', self.name, time.ctime()) # 进程自己有name,所以可以不用设定
    if __name__ == '__main__':
        li = []
        for i in range(3):
            # p = MyProcess(str(i))
            p = MyProcess()         # 进程默认有名字
            p.start()
            li.append(p)
        for i in li:
            i.join()
        print("end")

    image

    父子进程:

    父子进程:

    from multiprocessing import Process
    import os
    import time
    def info(title):
        print(title)
        print('module name:', __name__)
        print('parent process:', os.getppid())
        print('process id:', os.getpid())
    
    def f(name):
        info('33[31;1mfunction f33[0m')
        print('hello', name)
    
    if __name__ == '__main__':      # Win7下必须添加这个,否则会报错
        info('33[32;1mmain process line33[0m')
        time.sleep(10)
        p = Process(target=info, args=('33[32;1mson process33[0m',))
        p.start()
        p.join()

    image

    进程通信

    进程通信:

        1 Pipes  

        2 Queues

    Pipes:实现通信: 将父进程作为参数传递个子进程,子进程通过send发送消息给父进程

    from multiprocessing import Process, Pipe
    def f(conn):
        conn.send([12, 34, 56])
        # conn.send([12, 34, 56])  
        conn.close()
    if __name__ == '__main__':
        parent_conn, child_conn = Pipe()  # 类似Socket,返回主进程,子进程的通行管道
        p = Process(target=f, args=(child_conn, ))
        p.start()
        p2 = Process(target=f, args=(child_conn, ))
        p2.start()
        print(parent_conn.recv())  # 主进程接收的信息
        print(parent_conn.recv())  # 发送了2个所以接收2个
        p.join()

    image

    Queues:实现通信: 子进程复制了父进程。父进程将Queue对象pickle序列化后交个子进程反pickle

    from multiprocessing import Process, Queue
    import time
    def f(q, name):
        q.put([50, name, 'world'])
        print('Func Q:', id(q))
    if __name__ == '__main__':
        li = []
        q = Queue()
        q.put([12, 'heh', 'world'])
        print('Main Q:', id(q))
        for i in range(3):  # 文件内有4个进程,同时并发工作:主进程 + 3个进程
            p = Process(target=f, args=(q, i))  # 创建进程对象,同时子进程操作父进程的队列
            li.append(p)
            p.start()
        print(q.get())  # 父进程来获取子进程传递的
        print(q.get())  # 子进程复制了父进程。父进程将Queue对象pickle序列化后交个子进程反pickle
        print(q.get())
        print(q.get())
        for i in li:
            i.join()
        print('end')

    image

    进程数据共享

    Manager

    from multiprocessing import Process, Manager
    
    def f(d, l,n):
        d[n] = '1'
        d['2'] = 2
        d[0.25] = None
        l.append(n)
        # print(l)
    if __name__ == '__main__':
        with Manager() as manager:
            d = manager.dict()
            l = manager.list(range(5))
            p_list = []
            for i in range(10):
                p = Process(target=f, args=(d, l,i))
                p.start()
                p_list.append(p)
            for res in p_list:
                res.join()
            print(d)
            print(l)

    进程池

    进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

    进程池中有两个方法:

          1、 apply

          2、 apply_async

    from  multiprocessing import Process, Pool
    import time
    def Foo(i):
        time.sleep(2)
        return i + 100
    def Bar(arg):
        print('-->exec done:', arg)
    pool = Pool(5)
    for i in range(10):
        pool.apply_async(func=Foo, args=(i,), callback=Bar)
        # pool.apply(func=Foo, args=(i,))
    print('end')
    pool.close()
    pool.join()

    【更多参考】http://www.cnblogs.com/yuanchenqi/articles/5745958.html

    【更多参考】https://www.cnblogs.com/alex3714/articles/5230609.html

  • 相关阅读:
    逆序数
    Java处理对象
    Java8增强的包装类
    Java初始化块
    Linux- Linux软件配置
    Python- 【python无法更新pip】提示python.exe: No module named pip
    Error- Overloaded method value createDirectStream in error Spark Streaming打包报错
    Error- spark streaming 打包将全部依赖打进去Invalid signature file digest for Manifest main attributes
    Spark- Spark从SFTP中读取zip压缩文件数据做计算
    JAVA- 内部类及匿名内部类
  • 原文地址:https://www.cnblogs.com/ftl1012/p/9384268.html
Copyright © 2011-2022 走看看