zoukankan      html  css  js  c++  java
  • python学习日记——利用python进行数据分析

    一、基础

    1.python中的各种推导式(列表推导式、字典推导式、集合推导式)

    列表推导式:
        datalist = [i**2 for i in range(30) if i % 3 is 0]
    字典推导式:
        from numpy.random import randn
        datadict = {i:randn() for i in range(7)}
    集合推导式:
        dataset = {x**2 for x in [1, 1, 2]}
    

    2.matplotlib

    import matplotlib.pyplot as plt
    img = plt.imread("C:\Users\Administrator\Pictures\1.jpg")
    plt.imshow(img)
    plt.show()
    
    注意:plt.imshow()函数负责对图像进行处理并显示其格式;plt.show()函数则是将plt.imshow()处理过后的图像显示出来
    

    二、numpy基础

     1.ndarray对象

     1 # 创建ndarray对象,以下是创建从一维到高维的数组
     2 data1 = np.array(1.4)
     3 data2 = np.array([1.5,1.6,1.7])
     4 data3 = np.array([[1.25,3.14],[1.41,2.71]])
     5 data4 = np.array([[[1.25,3.14],[1.41,2.71]],[[1.25,3.14],[1.41,2.71]]])
     6 
     7 print(np.zeros((3,4))) #创建值全为0的数组(矩阵),维度是传入的元组
     8 print(np.ones((3,4))) #创建值全为1的数组(矩阵),维度是传入的元组
     9 print(np.eye(4)) #创建对应行列式的值为1的数组(矩阵),行列数对应传入整数
    10 print(np.empty((3,4))) #创建值随机的数组(矩阵),维度是传入的元组
    11 
    12 # ndarray对象的取值
    13 print(data3[0][0])
    14 print(data4[0][0][1])
    15 print(data4[0,0,1])
    16 
    17 # ndarray对象的内置方法
    18 print(data3.transpose()) #打印矩阵3的转置矩阵
    19 print(data4.shape) #打印数组的维度
    20 print(data4.dtype) #打印数组中值的类型
    21 print(data4[0].copy()) #显式复制
    22 
    23 # ndarray支持切片索引

     numpy.random中的randn()函数——生成正态分布的随机数据,参数是生成的数据的维度

    data5 = np.random.randn(10,10)
    print(data5[:,[6,7,8]]) #第一个:代表行全部选中,第二个[6,7,8]代表选中6,7,8列

     numpy.save()函数与numpy.load()函数

    data5 = np.random.randn(10,10)
    np.save("tester.npy",data5) #将数组保存为二进制文件,如果结尾没有.npy会自动加上
    data6= np.load("tester.npy") #加载保存数组的二进制文件,并返回ndarray对象
    print(data6)
    

    2.线性代数相关

    data8 = np.random.randn(2,2)
    data9 = np.random.randn(2,2)
    y = np.random.randn(2,1)
    # 矩阵乘法
    print(np.linalg.multi_dot([data8,data9]))
    # 矩阵的范数
    print(np.linalg.norm(data8))
    # 方阵的逆
    print(np.linalg.inv(data8))
    # 解线性方程组solve(a, b),`ax = b`.
    print(np.linalg.solve(data8,y))
    # 线性问题的最小二乘解
    data10 = np.random.randn(2,3)
    print(np.linalg.lstsq(data10,y,rcond=None))
    # 矩阵的伪逆
    print(np.linalg.pinv(data10))
    
    
    源码解释如下:
    norm            Vector or matrix norm
    inv             Inverse of a square matrix
    solve           Solve a linear system of equations
    det             Determinant of a square matrix
    slogdet         Logarithm of the determinant of a square matrix
    lstsq           Solve linear least-squares problem
    pinv            Pseudo-inverse (Moore-Penrose) calculated using a singular
                    value decomposition
    matrix_power    Integer power of a square matrix
    matrix_rank     Calculate matrix rank using an SVD-based method
    ==========================================================
    Eigenvalues and decompositions
    
    eig             Eigenvalues and vectors of a square matrix
    eigh            Eigenvalues and eigenvectors of a Hermitian matrix
    eigvals         Eigenvalues of a square matrix
    eigvalsh        Eigenvalues of a Hermitian matrix
    qr              QR decomposition of a matrix
    svd             Singular value decomposition of a matrix
    cholesky        Cholesky decomposition of a matrix
    ==========================================================
    Tensor operations
    
    tensorsolve     Solve a linear tensor equation
    tensorinv       Calculate an inverse of a tensor
    ==========================================================
    Exceptions
    
    LinAlgError     Indicates a failed linear algebra operation
    

    3.案例——随机漫步

     

    三、pandas基础

    1.Series对象 

      

  • 相关阅读:
    Hybrid APP基础篇(四)->JSBridge的原理
    剑指offer
    剑指offer
    如何在HTML中设置文本的大小写
    如何给HTML标签中的文本设置修饰线
    CSS设置文本的水平对齐方向
    如何在HTML中设置字体颜色,你知道这几种方式吗?
    CSS尺寸样式属性
    CSS基本选择器是什么?基本选择器是如何工作
    如何创建 CSS
  • 原文地址:https://www.cnblogs.com/ftxy/p/12014182.html
Copyright © 2011-2022 走看看