zoukankan      html  css  js  c++  java
  • dataStructure@ Check whether a given graph is Bipartite or not

    Check whether a given graph is Bipartite or not

    Bipartite Graph is a graph whose vertices can be divided into two independent sets, U and V such that every edge (u, v) either connects a vertex from U to V or a vertex from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, or u belongs to V and v to U. We can also say that there is no edge that connects vertices of same set.

    Bipartite1

    A bipartite graph is possible if the graph coloring is possible using two colors such that vertices in a set are colored with the same color. Note that it is possible to color a cycle graph with even cycle using two colors. For example, see the following graph.

    Bipartite2

    It is not possible to color a cycle graph with odd cycle using two colors.
    Bipartite3

    Algorithm to check if a graph is Bipartite:
    One approach is to check whether the graph is 2-colorable or not using backtracking algorithm m coloring problem.
    Following is a simple algorithm to find out whether a given graph is Birpartite or not using Breadth First Search (BFS).
    1. Assign RED color to the source vertex (putting into set U).
    2. Color all the neighbors with BLUE color (putting into set V).
    3. Color all neighbor’s neighbor with RED color (putting into set U).
    4. This way, assign color to all vertices such that it satisfies all the constraints of m way coloring problem where m = 2.
    5. While assigning colors, if we find a neighbor which is colored with same color as current vertex, then the graph cannot be colored with 2 vertices (or graph is not Bipartite)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<limits>
    #include<vector>
    #include<stack>
    using namespace std;
    struct edge{
        int to, cost;
        edge(int t){
            this->to = t; this->cost = 0;
        }
    };
    void addEdge(vector<edge> &, vector<vector<int> > &, int, int);//add directed edge.
    void buildMap(vector<edge> &edgelist, vector<vector<int> > &G){
        addEdge(edgelist,G,0,1);
        addEdge(edgelist,G,1,2);
        addEdge(edgelist,G,2,3);
        addEdge(edgelist,G,3,4);
        addEdge(edgelist,G,4,0);
        //addEdge(edgelist,G,5,0);
    }
    void addDoubleEdge(vector<edge> &, vector<vector<int> > &, int, int);// add undirected edge.
    bool isCyclic(vector<edge>, vector<vector<int> >,vector<bool>, vector<bool>, int);// find cycles starting from v.
    void isCyclicUtil(vector<edge>, vector<vector<int> >);// find all cycles.
    bool dfs(vector<edge>, vector<vector<int> >, vector<bool>, int, int);//check if ''to'' is reachable from ''from''.
    void isReachable(vector<edge>, vector<vector<int> >, int, int);
    bool isBipartitie(vector<edge> , vector<vector<int> >,int v);//check if a graph is a bipartite graph.
    int main(){
        int maxn = 5;
        vector<edge> edgelist;
        vector<vector<int> > G(maxn);
        
        buildMap(edgelist,G);
        
        //isCyclicUtil(edgelist, G);
        
        //isReachable(edgelist, G, 1, 1);
        
        if(isBipartitie(edgelist, G, 0)) cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
        
        return 0;
    }
    bool isCyclic(vector<edge> edgelist, vector<vector<int> > G,vector<bool> vis, vector<bool> RecStack, int v){
        for(int i=0;i<G[v].size();++i){
            edge e = edgelist[G[v][i]];
            if(RecStack[e.to]) return true;
            if(!vis[e.to]){
                vis[e.to] = true; RecStack[e.to] = true;
                if(isCyclic(edgelist,G,vis,RecStack,e.to)) return true;
                RecStack[e.to] = false;
            }
        }
        return false;
    }
    void isCyclicUtil(vector<edge> edgelist, vector<vector<int> > G){// find all cycles.
        vector<bool> vis(G.size());
        vector<bool> RecStack(G.size());
        for(int i=0;i<vis.size();++i) vis[i]=false;
        for(int i=0;i<RecStack.size();++i) RecStack[i]=false;
        
        for(int i=0;i<G.size();++i){
            if(!vis[i]){
                vis[i] = true; RecStack[i] = true;
                if(isCyclic(edgelist,G,vis,RecStack,i)){
                    cout<<i<<" starts a cycle"<<endl; 
                }
                RecStack[i] = false;
            }
        }
    }
    void addEdge(vector<edge> &edgelist, vector<vector<int> > &G, int from, int to){
        edgelist.push_back(edge(to));
        G[from].push_back(edgelist.size()-1);
    }
    void addDoubleEdge(vector<edge> &edgelist, vector<vector<int> > &G, int from, int to){
        addEdge(edgelist,G,from,to);
        addEdge(edgelist,G,to,from);
    }
    bool dfs(vector<edge> edgelist, vector<vector<int> > G, vector<bool> vis, int from, int to){
        if(from == to) return true;
        for(int i=0;i<G[from].size();++i){
            edge e = edgelist[G[from][i]];
            if(e.to == to) return true;
            if(!vis[e.to]){
                vis[e.to] = true;
                if(dfs(edgelist, G, vis, e.to, to)) return true;
            }
        }
        return false;
    }
    void isReachable(vector<edge> edgelist, vector<vector<int> > G, int from, int to){
        vector<bool> vis(G.size());
        for(int i=0;i<vis.size();++i) vis[i] = false;
        vis[from] = true;
        if(dfs(edgelist, G, vis, from, to)) cout<<from<<" and "<<to<<" are reachable to each other"<<endl;
        else cout<<from<<" and "<<to<<" are not reachable to each other"<<endl;
    }
    bool isBipartitie(vector<edge> edgelist, vector<vector<int> > G,int v){
        vector<int> color(G.size());
        for(int i=0;i<color.size();++i) color[i] = -1;
        stack<int> st; 
        while(!st.empty()) st.pop();
        
        st.push(v); color[v]=1;// 1 stands for RED, and 0 stands for BLUE, -1 stands for non-colored.
        
        while(!st.empty()){
            int k = st.top(); st.pop();
            
            for(int i=0;i<G[k].size();++i){
                edge e = edgelist[G[k][i]];
                if(color[e.to] == -1){
                    color[e.to] = 1 - color[k];
                    st.push(e.to);
                } 
                else if(color[e.to] == color[k]) return false;
            }
        }
        return true;
    }
    View Code
  • 相关阅读:
    hibernate笔记--实体类映射文件"*.hbm.xml"详解
    struts2学习笔记--使用struts2插件实现ajax处理(返回json数据)
    struts2学习笔记--使用servletAPI实现ajax的一个小Demo
    Struts2学习笔记--使用Response下载文件和Struts2的StreamResult文件下载
    struts2学习笔记--上传单个和批量文件示例
    struts2学习笔记--拦截器(Interceptor)和登录权限验证Demo
    struts2学习笔记--使用Validator校验数据
    struts2学习笔记--OGNL表达式1
    easyui dialog 扩展load
    easyui filter 过滤时间段
  • 原文地址:https://www.cnblogs.com/fu11211129/p/4906281.html
Copyright © 2011-2022 走看看