zoukankan      html  css  js  c++  java
  • dataStructure@ Check whether a given graph is Bipartite or not

    Check whether a given graph is Bipartite or not

    Bipartite Graph is a graph whose vertices can be divided into two independent sets, U and V such that every edge (u, v) either connects a vertex from U to V or a vertex from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, or u belongs to V and v to U. We can also say that there is no edge that connects vertices of same set.

    Bipartite1

    A bipartite graph is possible if the graph coloring is possible using two colors such that vertices in a set are colored with the same color. Note that it is possible to color a cycle graph with even cycle using two colors. For example, see the following graph.

    Bipartite2

    It is not possible to color a cycle graph with odd cycle using two colors.
    Bipartite3

    Algorithm to check if a graph is Bipartite:
    One approach is to check whether the graph is 2-colorable or not using backtracking algorithm m coloring problem.
    Following is a simple algorithm to find out whether a given graph is Birpartite or not using Breadth First Search (BFS).
    1. Assign RED color to the source vertex (putting into set U).
    2. Color all the neighbors with BLUE color (putting into set V).
    3. Color all neighbor’s neighbor with RED color (putting into set U).
    4. This way, assign color to all vertices such that it satisfies all the constraints of m way coloring problem where m = 2.
    5. While assigning colors, if we find a neighbor which is colored with same color as current vertex, then the graph cannot be colored with 2 vertices (or graph is not Bipartite)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<limits>
    #include<vector>
    #include<stack>
    using namespace std;
    struct edge{
        int to, cost;
        edge(int t){
            this->to = t; this->cost = 0;
        }
    };
    void addEdge(vector<edge> &, vector<vector<int> > &, int, int);//add directed edge.
    void buildMap(vector<edge> &edgelist, vector<vector<int> > &G){
        addEdge(edgelist,G,0,1);
        addEdge(edgelist,G,1,2);
        addEdge(edgelist,G,2,3);
        addEdge(edgelist,G,3,4);
        addEdge(edgelist,G,4,0);
        //addEdge(edgelist,G,5,0);
    }
    void addDoubleEdge(vector<edge> &, vector<vector<int> > &, int, int);// add undirected edge.
    bool isCyclic(vector<edge>, vector<vector<int> >,vector<bool>, vector<bool>, int);// find cycles starting from v.
    void isCyclicUtil(vector<edge>, vector<vector<int> >);// find all cycles.
    bool dfs(vector<edge>, vector<vector<int> >, vector<bool>, int, int);//check if ''to'' is reachable from ''from''.
    void isReachable(vector<edge>, vector<vector<int> >, int, int);
    bool isBipartitie(vector<edge> , vector<vector<int> >,int v);//check if a graph is a bipartite graph.
    int main(){
        int maxn = 5;
        vector<edge> edgelist;
        vector<vector<int> > G(maxn);
        
        buildMap(edgelist,G);
        
        //isCyclicUtil(edgelist, G);
        
        //isReachable(edgelist, G, 1, 1);
        
        if(isBipartitie(edgelist, G, 0)) cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
        
        return 0;
    }
    bool isCyclic(vector<edge> edgelist, vector<vector<int> > G,vector<bool> vis, vector<bool> RecStack, int v){
        for(int i=0;i<G[v].size();++i){
            edge e = edgelist[G[v][i]];
            if(RecStack[e.to]) return true;
            if(!vis[e.to]){
                vis[e.to] = true; RecStack[e.to] = true;
                if(isCyclic(edgelist,G,vis,RecStack,e.to)) return true;
                RecStack[e.to] = false;
            }
        }
        return false;
    }
    void isCyclicUtil(vector<edge> edgelist, vector<vector<int> > G){// find all cycles.
        vector<bool> vis(G.size());
        vector<bool> RecStack(G.size());
        for(int i=0;i<vis.size();++i) vis[i]=false;
        for(int i=0;i<RecStack.size();++i) RecStack[i]=false;
        
        for(int i=0;i<G.size();++i){
            if(!vis[i]){
                vis[i] = true; RecStack[i] = true;
                if(isCyclic(edgelist,G,vis,RecStack,i)){
                    cout<<i<<" starts a cycle"<<endl; 
                }
                RecStack[i] = false;
            }
        }
    }
    void addEdge(vector<edge> &edgelist, vector<vector<int> > &G, int from, int to){
        edgelist.push_back(edge(to));
        G[from].push_back(edgelist.size()-1);
    }
    void addDoubleEdge(vector<edge> &edgelist, vector<vector<int> > &G, int from, int to){
        addEdge(edgelist,G,from,to);
        addEdge(edgelist,G,to,from);
    }
    bool dfs(vector<edge> edgelist, vector<vector<int> > G, vector<bool> vis, int from, int to){
        if(from == to) return true;
        for(int i=0;i<G[from].size();++i){
            edge e = edgelist[G[from][i]];
            if(e.to == to) return true;
            if(!vis[e.to]){
                vis[e.to] = true;
                if(dfs(edgelist, G, vis, e.to, to)) return true;
            }
        }
        return false;
    }
    void isReachable(vector<edge> edgelist, vector<vector<int> > G, int from, int to){
        vector<bool> vis(G.size());
        for(int i=0;i<vis.size();++i) vis[i] = false;
        vis[from] = true;
        if(dfs(edgelist, G, vis, from, to)) cout<<from<<" and "<<to<<" are reachable to each other"<<endl;
        else cout<<from<<" and "<<to<<" are not reachable to each other"<<endl;
    }
    bool isBipartitie(vector<edge> edgelist, vector<vector<int> > G,int v){
        vector<int> color(G.size());
        for(int i=0;i<color.size();++i) color[i] = -1;
        stack<int> st; 
        while(!st.empty()) st.pop();
        
        st.push(v); color[v]=1;// 1 stands for RED, and 0 stands for BLUE, -1 stands for non-colored.
        
        while(!st.empty()){
            int k = st.top(); st.pop();
            
            for(int i=0;i<G[k].size();++i){
                edge e = edgelist[G[k][i]];
                if(color[e.to] == -1){
                    color[e.to] = 1 - color[k];
                    st.push(e.to);
                } 
                else if(color[e.to] == color[k]) return false;
            }
        }
        return true;
    }
    View Code
  • 相关阅读:
    什么是递归神经网络
    2020年蜂窝网络连接超过110亿台设备
    伊朗Cisco路由器遭黑客攻击 全国互联网几乎瘫痪
    看了才知道!伊朗黑客组织原来这么牛
    美国知名Cloudflare网络公司遭中国顶尖黑客攻击
    如何对Web服务器进行飓风级防御
    美国的科技公司是如何使用加密的DNS
    揭秘网络黑客常见的6种必用攻击手段
    物联网是什么?您的家用电器从黑客手中安全吗
    不可不知!设置什么密码才不易被黑客破解
  • 原文地址:https://www.cnblogs.com/fu11211129/p/4906281.html
Copyright © 2011-2022 走看看