zoukankan      html  css  js  c++  java
  • 卡尔曼滤波——19.卡尔曼滤波器代码

    我们写一个主程序,包括两个函数更新函数和预测函数,然后导入一系列测量和运动数据。

    如果初始估计是5,非常好,但我们将其设置为mu=0,且不确定性非常高为sig=10000.

    我们假设测量不确定性为常量4,运动不确定性为2.

    运动时 你的第一次位置估计应该是4.9.原因在于初始不确定性高,第一次测量值5主导了估计结果。

    你的不确定性缩减到了3,99

    比测量不确定性稍好一点。

    然后你的预测加1,但是不确定性增加到了5.99

    也就是运动不确定性等于2,然后根据测量数据6 再次跟新 得到你的估计5.99

    你再移动1 测量数据为7 你移动2 测量数据9 你移动1  测量数据10 最后移动1.

    最后结果出来 该位置的预测为10.99

    即你的位置10移动1  残留不确定性为4.

    # Write a program that will iteratively update and
    # predict based on the location measurements 
    # and inferred motions shown below. 
    
    def update(mean1, var1, mean2, var2):
        new_mean = float(var2 * mean1 + var1 * mean2) / (var1 + var2)
        new_var = 1./(1./var1 + 1./var2)
        return [new_mean, new_var]
    
    def predict(mean1, var1, mean2, var2):
        new_mean = mean1 + mean2
        new_var = var1 + var2
        return [new_mean, new_var]
    
    measurements = [5., 6., 7., 9., 10.]
    motion = [1., 1., 2., 1., 1.]
    measurement_sig = 4.
    motion_sig = 2.
    mu = 0.
    sig = 10000.
    
    #Please print out ONLY the final values of the mean
    #and the variance in a list [mu, sig]. 
    
    # Insert code here
    for n in range(len(measurements)):
    [mu,sig]=update(mu,sig,measurements[n],measurement_sig)
    print 'update:',[mu,sig]
    [mu,sig]=predict(mu,sig,motion[n],motion_sig)
    print 'predict:',[mu,sig] print [mu, sig]

    这段代码部署了整个卡尔曼滤波器,它检查了所有测量元素 并默认,测量值的个数为运动的n次幂,它使用update 递归公式更新mu和sigma.  如果我们导入第n个测量值和测量不确定性,他会对运动进行同样的操作,这里的预测部分,它使用第n个运动和运动不确定性递归地更新mu和sigma 并把这些全部打印出来。

    以上就是一个完整的一维卡尔曼滤波。

  • 相关阅读:
    Symfony Component HttpKernel Exception AccessDeniedHttpException This action is unauthorized.
    AngularJs ng-repeat中使用ng-model
    JS数组排序sort()方法同时按照两种方式排序的用法
    MongoDB
    Node基本学习
    小程序 五 组件使用
    小程序 四 事件类型
    小程序 二 template模板(代码复用)
    小程序 wxs 脚本语言(2种使用方式)
    小程序初体验 wx:for
  • 原文地址:https://www.cnblogs.com/fuhang/p/8981703.html
Copyright © 2011-2022 走看看