zoukankan      html  css  js  c++  java
  • CNN滤波器

    CNN 的第一步是把图片分成小块。我们通过选取一个给定宽度和高度的滤波器来实现这一步。

    滤波器会照在图片的小块 patch (图像区块)上。这些 patch 的大小与滤波器一样大。

     

    如之前视频所示,CNN用滤波器来把图片分割成更小的 patch,patch 的大小跟滤波器大小相同。

     

    我们可以在水平方向,或者竖直方向滑动滤波器对图片的不同部分进行聚焦。

    滤波器滑动的间隔被称作 stride(步长)。这是你可以调节的一个超参数。增大 stride 值后,会减少每层总 patch 数量,因此也减小了模型大小。通常这也会降低图像精度。

    让我们看一个例子,在这个放大的狗图片中,我们从红框开始,我们滤波器的高和宽决定了这个正方形的大小。

     

    金色巡回犬图片的一块

     

    然后我们向右把方块移动一个给定的步长(这里是2),得到另一块 patch。

     

    我们把方块向右移动两个像素,得到另一个 patch。

     

    这里最重要的是我们把相邻的像素聚在一起,把他们视作一个集合。

    在普通非卷积的神经网络中,我们忽略了这种临近性。在普通网络中,我们把输入图片中的每一个像素与下一层的神经元相连。图片中相邻像素在一起是有原因的,并且有着特殊意义,但普通网络没有有效利用好这些信息。

    要利用这种临近结构,我们的 CNN 就要学习如何分类临近模式,例如图片中的形状和物体。

     

    滤波器深度 Filter Depth

    通常都会有多余一个滤波器,不同滤波器提取一个 patch 的不同特性。例如,一个滤波器寻找特定颜色,另一个寻找特定物体的特定形状。卷积层滤波器的数量被称为滤波器深度。

     

    上述例子中,一个 patch 与下一层的神经元相连

    来源: MIchael Neilsen

     

    每个 patch 连接多少神经元?

    这取决于滤波器的深度,如果深度是 k,我们把每个 patch 与下一层的 k 个神经元相连。这样下一层的高度就是 k,如下图所示。实际操作中,k是一个我们可以调节的超参数,大多数的 CNNs 倾向于选择相同的起始值。

     

    滤波器的深度为k,与下一层的k个神经元相连

     

    为什么我们把一个 patch 与下一层的多个神经元相连呢?一个神经元不够好吗?

    多个神经元的作用在于,一个 patch 可以有多个有意义的,可供提取的特点。

    例如,一个 patch 可能包括白牙,金色的须,红舌头的一部分。在这种情况下,我们需要一个深度至少为3的滤波器,一个识别牙,一个识别须,一个识别舌头。

     

    这只狗的 patch 有很多有意思的特征需要提取。包括牙、须以及粉红色的舌头。

     

    一个 patch 连接有多个神经元可以保证我们的 CNNs 学会提取任何它觉得重要的特征。

  • 相关阅读:
    博客园的Windows Mobile开发专栏
    使大脑迟钝的9种不良习惯
    javascript中实现QueryString的function
    DeviceIoControl实现异步的方法总结
    List of Scientist`s Names
    制版经验谈
    AVRUSB技术探讨(转)
    unexpected WaitForXfer() behavior
    openMP讨论帖
    全角半角SBCDBC
  • 原文地址:https://www.cnblogs.com/fuhang/p/9263953.html
Copyright © 2011-2022 走看看