1、什么是边缘模型
图1.1
连续二维边缘模型如图1.1所示,其中h1为背景灰度值,h2为目标灰度值,l为实际边缘点到原点的归一化距离,θ为边缘法线方向与x轴的夹角,q[-$pi $/2,$pi $/2]。
2、空间矩法(spatial-gray moment,SGM)
二阶连续函数fm(x,y)的p+q阶空间矩定义为
${M_{pq}} = int!!!int {x^p}{y^q}{f_m}left( {x,y} ight)dxdy$
数字化图像的p+q阶空间矩定义为
${M_{pq}} = sum sum {x^p}{y^q}{f_m}left( {x,y} ight)$
边缘模型参数计算公式:
[left{ egin{array}{l}
heta = arctan left( {{M_{01}}/{M_{10}}}
ight)\
l = left( {4{{M'}_{20}} - {{M'}_{00}}}
ight)/left( {3{{M'}_{10}}}
ight)\
k = left( {3{{M'}_{10}}}
ight)/left[ {2sqrt {{{left( {1 - {l^2}}
ight)}^3}} }
ight]\
h = left[ {2{{M'}_{00}} - kleft( {pi - 2arcsin l - 2lsqrt {1 - {l^2}} }
ight)}
ight]/2pi
end{array}
ight.]
式中,k为目标灰度和背景灰度的对比度,数值为h1与h2之差,各阶空间矩的数值由各自的矩模板与图像灰度值卷积得到。
3、Zernike正交矩法(Zernike orthogonal moment,ZOM)
二阶连续函数fm(x,y)的p+q阶的ZOM定义为
${Z_{pq}} = frac{{p + 1}}{pi }int!!!int fleft( {x,y} ight){V_{pq}}left( { ho , heta } ight)dxdy$
边缘模型参数计算公式:
[left{ egin{array}{l}
heta = arctan left( {frac{{{
m{Im}}left( {{Z_{11}}}
ight)}}{{{
m{Re}}left( {{Z_{11}}}
ight)}}}
ight)\
l = {Z_{20}}/{{Z'}_{11}}\
k = left( {3{{Z'}_{11}}}
ight)/left[ {2sqrt {{{left( {1 - {l^2}}
ight)}^3}} }
ight]\
h = left[ {{{Z'}_{00}} - kleft( {pi /2 - arcsin l - lsqrt {1 - {l^2}} }
ight)}
ight]/pi
end{array}
ight.]
4、正交傅里叶-马林矩法(orthogonal Fourier-Mellin moment,OFMM)
二阶连续函数fm(x,y)的p+q阶的OFMM定义为
${emptyset _{pq}} = frac{{p + 1}}{pi }mathop sum limits_{s = 0}^p {alpha _{ps}}mathop int!!!int limits_{ - infty }^{ + infty } fleft( {x,y} ight){left( {x + jy} ight)^{frac{{s - p}}{2}}}{(x - jy)^{frac{{s + p}}{2}}}dxdy$
边缘模型参数计算公式:
[left{ egin{array}{l}
heta = arctan left[ { - frac{{{
m{Im}}left( {2({phi _{01}} + {phi _{11}})}
ight)}}{{{
m{Re}}left( {2({phi _{01}} + {phi _{11}})}
ight)}}}
ight]\
l = frac{3}{5}left( {frac{{4{phi _{10}} + {phi _{20}}}}{{2{{phi '}_{01}} + {{phi '}_{11}}}}}
ight)\
k = left( {2{{phi '}_{01}} + {{phi '}_{11}}}
ight)/left[ {2sqrt {{{left( {1 - {l^2}}
ight)}^3}} }
ight]\
h = left[ {{{phi '}_{00}} - kleft( {arcsin sqrt {1 - {l^2}} - lsqrt {1 - {l^2}} }
ight)}
ight]/pi
end{array}
ight.]
由于OFMM和ZOM法所求的q和l相同,而最终亚像素级边缘定位结果仅仅与q和l有关,因此,OFMM和ZOM法的亚像素级边缘定位结果完全一致,另外三种方法获得的边缘角度q相同。
【 结束 】