zoukankan      html  css  js  c++  java
  • poj3661:Running

    Description

    The cows are trying to become better athletes, so Bessie is running on a track for exactly N (1 ≤ N ≤ 10,000) minutes. During each minute, she can choose to either run or rest for the whole minute.

    The ultimate distance Bessie runs, though, depends on her 'exhaustion factor', which starts at 0. When she chooses to run in minute i, she will run exactly a distance of Di (1 ≤ Di ≤ 1,000) and her exhaustion factor will increase by 1 -- but must never be allowed to exceed M (1 ≤ M ≤ 500). If she chooses to rest, her exhaustion factor will decrease by 1 for each minute she rests. She cannot commence running again until her exhaustion factor reaches 0. At that point, she can choose to run or rest.

    At the end of the N minute workout, Bessie's exaustion factor must be exactly 0, or she will not have enough energy left for the rest of the day.

    Find the maximal distance Bessie can run.

    Input

    * Line 1: Two space-separated integers: N and M
    * Lines 2..N+1: Line i+1 contains the single integer: Di

    Output

    * Line 1: A single integer representing the largest distance Bessie can run while satisfying the conditions.
     

    Sample Input

    5 2
    5
    3
    4
    2
    10
    

    Sample Output

    9
    题解
    转移方程比较好理解,把疲劳为0单独处理,剩下的就比较好思考了。
     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<cstring>
     4 using namespace std;
     5 int t,n,k;
     6 int f[10005][505];
     7 int main()
     8 {
     9     scanf("%d%d",&n,&k);
    10     for(int i=1 ; i<=n ; ++i)
    11     {
    12         scanf("%d",&t);
    13         for(int j=1 ; j<=k&&j<=i ; ++j)
    14             f[i][j]=f[i-1][j-1]+t;
    15         f[i][0]=f[i-1][0]; 
    16         for(int j=1 ; j<=k&&i-j>=0 ; ++j)
    17             f[i][0]=max(f[i-j][j],f[i][0]);
    18     } 
    19     printf("%d",f[n][0]);
    20     return 0;
    21 }
    
    
  • 相关阅读:
    ssh事务配置
    使用注解实现事务处理
    c3p0、dbcp<转>
    添加业务层和事务机制
    使用spring集成hibernate
    使用Adivisor配置增强处理
    aop注解
    Spring IoC实现解耦合
    python console的命令执行
    python格式化输出
  • 原文地址:https://www.cnblogs.com/fujudge/p/7523072.html
Copyright © 2011-2022 走看看