zoukankan      html  css  js  c++  java
  • python实现Huffman编码

    一、问题

    利用二叉树的结构对Huffman树进行编码,实现最短编码

    二、解决

      1 # 构建节点类
      2 class TreeNode:
      3     def __init__(self, data):
      4         """
      5         :data is a tuple the first element is value and the second is priority
      6         :param data:
      7         """
      8         self.value = data[0]
      9         self.priority = data[1]
     10         self.left_child = None
     11         self.right_child = None
     12         self.code = ""
     13 
     14 
     15 # 创建树节点队列的函数
     16 def create_node_queue(codes):
     17     queue = []
     18     for code in codes:
     19         queue.append(TreeNode(code))
     20     return queue
     21 
     22 
     23 # 在队列中间添加新的节点元素并保证优先度从大到小排列
     24 def add_queue(queue, node_new):
     25     if len(queue) == 0:
     26         return [node_new]
     27     for i in range(len(queue)):
     28         if queue[i].priority >= node_new.priority:
     29             return queue[:i] + [node_new] + queue[i:]
     30     return queue + [node_new]
     31 
     32 
     33 # 节点队列类
     34 class NodeQueue:
     35     def __init__(self, code):
     36         self.queue = create_node_queue(code)
     37         self.size = len(self.queue)
     38 
     39     def add_node(self, node):
     40         self.queue = add_queue(self.queue, node)
     41         self.size += 1
     42 
     43     def pop_node(self):
     44         self.size -= 1
     45         return self.queue.pop(0)
     46 
     47 
     48 # 各个字符在字符串中出现的次数 即计算优先度
     49 def frequent_char(string_s):
     50     store_d = {}
     51     for c in string_s:
     52         if c not in store_d:
     53             store_d[c] = 1
     54         else:
     55             store_d[c] += 1
     56     return sorted(store_d.items(), key=lambda x: x[1])
     57 
     58 
     59 # 创建Huffman树
     60 def create_huffman_tree(node_queue):
     61     while node_queue.size != 1:
     62         node1 = node_queue.pop_node()
     63         node2 = node_queue.pop_node()
     64         r_1 = TreeNode([None, node1.priority + node2.priority])
     65         r_1.left_child = node1
     66         r_1.right_child = node2
     67         node_queue.add_node(r_1)
     68     return node_queue.pop_node()
     69 
     70 
     71 code_dict1 = {}
     72 code_dict2 = {}
     73 
     74 
     75 # 由Huffman树得到的Huffman编码表
     76 def huffman_code_dict(head, x):
     77     # global code_dict, code_list
     78     if head:
     79         huffman_code_dict(head.left_child, x + "0")
     80         head.code += x
     81         if head.value:
     82             code_dict2[head.code] = head.value
     83             code_dict1[head.value] = head.code
     84         huffman_code_dict(head.right_child, x + "1")
     85 
     86 
     87 # 字符串编码
     88 def trans_encode(string_s):
     89     # global code_dict1
     90     trans_code = ""
     91     for c in string_s:
     92         trans_code += code_dict1[c]
     93     return trans_code
     94 
     95 
     96 # 字符串解码
     97 def trans_decode(string_s):
     98     # global code_dict1
     99     code = ""
    100     answer = ""
    101     for c in string_s:
    102         code += c
    103         if code in code_dict2:
    104             answer += code_dict2[code]
    105             code = ""
    106     return answer

    三、总结
    利用Huffman树的编码形式可以进行数据的压缩,因此Huffman的应用也很广泛。在此记录一下方便以后查看。

  • 相关阅读:
    shell 函数
    使用Alpine镜像构建镜像
    macos修改vmware Fusion的NAT网络
    K8s Pod与宿主机时区不同步
    nginx热升级
    awk分析web日志
    k8s 新建用户远程连接集群和context切换
    查询出口公网ip
    微服务之服务网格 Istio
    Systemd 、systemctl进程管理工具
  • 原文地址:https://www.cnblogs.com/future-dream/p/10801934.html
Copyright © 2011-2022 走看看