zoukankan      html  css  js  c++  java
  • 几种常见损失函数

    损失函数 Loss Function 也可称为代价函数 Cost Function,用于衡量预测值与实际值的偏离程度。我们机器学习的目标就是希望预测值与实际值偏离较小,也就是希望损失函数较小,也就是所谓的最小化损失函数。

    几种常见的损失函数如下:

    1.0-1损失 :可用于分类问题,该函数用户衡量误分类的数量,但是由于该函数由于是非凸的,在最优化过程中求解不方便,有阶跃,不连续,所以使用不多。

    2.绝对值损失:

    3.平方损失:常用于线性回归

    4.对数损失Log Loss:常用于模型输出每一类概率的分类器,比如逻辑斯蒂回归。也叫交叉上损失Cross-entropy Loss(交    叉熵用于衡量两个概率分布的差异性)

    5.Hinge损失函数:常用于SVM

    对于回归问题,常用平方损失和绝对值损失

    对于分类问题,常用Logloss和hinge loss

    Logistic使用Log Loss 不使用平方损失的原因:

    平方损失会导致损失函数是theta的非凸函数,不利于求解,因为非凸函数会存在许多的局部最优解。

  • 相关阅读:
    seaborn可视化NOTE
    快速入门pandas
    protege下载安装使用
    用上Latex实现编辑伪代码
    决策树可视化
    关于时间
    地理三维模型制作
    Python使用记录
    编码格式
    素数生成算法小结
  • 原文地址:https://www.cnblogs.com/futurehau/p/6707895.html
Copyright © 2011-2022 走看看