zoukankan      html  css  js  c++  java
  • Eigen库的示例使用

    • 矩阵定义
     1 Matrix<double, 3, 3> A;                // A.定义3x3double 矩阵
     2 Matrix<double, 3, Dynamic> A;          //定义3xn double 矩阵,列为动态变化
     3 Matrix<double, Dynamic, Dynamic>  A;   // 定义 double 矩阵,行、列为动态变化,由需要决定
     4 MatrixXd A;                            // 定义 double 矩阵,行、列为动态变化,由需要决定
     5 Matrix<double, 3, 3, RowMajor>  A;     // 定义3x3 double 矩阵,按行储存,默认按列储存效率较高。
     6 Matrix3f  A;                           // 定义3x3 float 矩阵A.
     7 Vector3f  A;                           // 定义3x1 float 列向量A.
     8 VectorXd  A;                           // 定义动态double列向量A
     9 RowVector3f  A;                        // 定义1x3 float 行向量A.
    10 RowVectorXd  A;                        // 定义动态double行向量A.
    • 矩阵使用
      • 赋值 
    Matrix<double, 3, 3> A;
    A << 1, 2, 3, 4, 5, 6, 7, 8, 9;

    1     RowVectorXd vec1(3);
    2     vec1 << 1, 2, 3;
    3     
    4     RowVectorXd vec2(4);
    5     vec2 << 1, 4, 9, 16;
    6 
    7     RowVectorXd joined(7);
    8     joined << vec1, vec2;
    9             

    MatrixXd A = MatrixXd::Random(3, 3);    //随机生成3*3的double型矩阵

    1 Matrix3d A= Matrix3d::Zero();          //生成3*3的0矩阵

    Matrix3d A;
    A.fill(3);//全部为3

    Matrix3d A;
    A.fill(3);
    Matrix<double, 3,9> B;
    B << A, A, A; //按块添加

    • 操作元素
     1 // Basic usage
     2 // Eigen        // Matlab           // comments
     3 x.size()        // length(x)        // vector size
     4 C.rows()        // size(C,1)        // number of rows
     5 C.cols()        // size(C,2)        // number of columns
     6 x(i)            // x(i+1)           // Matlab is 1-based
     7 C(i, j)         // C(i+1,j+1)       //
     8 
     9 A.resize(4, 4);   // Runtime error if assertions are on.
    10 B.resize(4, 9);   // Runtime error if assertions are on.
    11 A.resize(3, 3);   // Ok; size didn't change.
    12 B.resize(3, 9);   // Ok; only dynamic cols changed.
    13                   
    14 A << 1, 2, 3,     // Initialize A. The elements can also be
    15      4, 5, 6,     // matrices, which are stacked along cols
    16      7, 8, 9;     // and then the rows are stacked.
    17 B << A, A, A;     // B is three horizontally stacked A's.
    18 A.fill(10);       // Fill A with all 10's.
     1 Matrix<double, 3, 2> A;
     2     A << 1, 2, 
     3          3, 7, 
     4          8, 9;
     5     cout << "矩阵A为:" << endl << A << endl
     6         << "矩阵A的元素个数为:"  << A.size() << endl
     7         << "矩阵A的行数为:"  << A.rows() << endl
     8         << "矩阵A的列数为:"  << A.cols() << endl
     9         << "矩阵A的第4个元素为:"  << A(3) << endl //按列存储,左列为0-2右列为3-5
    10         << "矩阵A的第2行第2列元素为:" << A(1, 1) << endl;//行列从0开始

      •  特殊矩阵:
     1 // Eigen                            // Matlab
     2 MatrixXd::Identity(rows,cols)       // eye(rows,cols)
     3 C.setIdentity(rows,cols)            // C = eye(rows,cols)
     4 MatrixXd::Zero(rows,cols)           // zeros(rows,cols)
     5 C.setZero(rows,cols)                // C = ones(rows,cols)
     6 MatrixXd::Ones(rows,cols)           // ones(rows,cols)
     7 C.setOnes(rows,cols)                // C = ones(rows,cols)
     8 MatrixXd::Random(rows,cols)         // rand(rows,cols)*2-1        // MatrixXd::Random returns uniform random numbers in (-1, 1).
     9 C.setRandom(rows,cols)              // C = rand(rows,cols)*2-1
    10 VectorXd::LinSpaced(size,low,high)  // linspace(low,high,size)'
    11 v.setLinSpaced(size,low,high)       // v = linspace(low,high,size)'

    实例操作:

    1    MatrixXd A,B,C,D;
    2     Matrix<double, 1, 9> E;
    3     cout << "A.setIdentity(3, 3)单位阵:" << endl << A.setIdentity(3, 3) << endl//单位阵
    4          << "B.setZero(2, 3)全零阵:" << endl << B.setZero(2, 3) << endl//全零矩阵
    5          << "C.setOnes(3, 2)全1阵:" << endl << C.setOnes(3, 2) << endl//全1矩阵
    6          << "D.setRandom(2.3)随机阵" << endl << D.setRandom(2, 3) << endl//随机阵
    7          << "E.setLinSpaced(9, 10,90)线性阵" << endl << E.setLinSpaced(9, 10,90) << endl;//线性阵9个数10-90均匀分布

    矩阵分块:

    // 下面x为列或行向量,P为矩阵
    // Eigen                           // Matlab
    x.head(n)                          // x(1:n)
    x.head<n>()                        // x(1:n)
    x.tail(n)                          // x(end - n + 1: end)
    x.tail<n>()                        // x(end - n + 1: end)
    x.segment(i, n)                    // x(i+1 : i+n)
    x.segment<n>(i)                    // x(i+1 : i+n)
    P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
    P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
    P.row(i)                           // P(i+1, :)
    P.col(j)                           // P(:, j+1)
    P.leftCols<cols>()                 // P(:, 1:cols)
    P.leftCols(cols)                   // P(:, 1:cols)
    P.middleCols<cols>(j)              // P(:, j+1:j+cols)//取出从j+1列开始的cols列
    P.middleCols(j, cols)              // P(:, j+1:j+cols)
    P.rightCols<cols>()                // P(:, end-cols+1:end)
    P.rightCols(cols)                  // P(:, end-cols+1:end)
    P.topRows<rows>()                  // P(1:rows, :)
    P.topRows(rows)                    // P(1:rows, :)
    P.middleRows<rows>(i)              // P(i+1:i+rows, :)
    P.middleRows(i, rows)              // P(i+1:i+rows, :)
    P.bottomRows<rows>()               // P(end-rows+1:end, :)
    P.bottomRows(rows)                 // P(end-rows+1:end, :)
    P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
    P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
    P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
    P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
    P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
    P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
    P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
    P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)

    实例操作:

     1 Matrix<double, 3, 3> A;
     2          A << 1, 2, 3, 
     3               4, 5, 6,
     4               7, 8, 9;
     5          Vector4d  B;//列向量
     6          B << 1, 2, 3, 4; 
     7          RowVector4f  C;//行向量
     8          C << 0, 1, 2, 3;
     9          cout << "矩阵A为:" << endl << A << endl
    10              << "列向量B为:" << endl << B << endl
    11              << "行向量C为:" << endl << C << endl
    12              << "列向量B的前2个元素B.head(2)为:" << endl << B.head(2) << endl
    13              << "行向量C的前2个元素C.head<2>()为:" << endl << C.head<2>() << endl
    14              << "列向量B的倒数2个元素B.tail(2)为:" << endl << B.tail(2) << endl
    15              << "行向量C的倒数2个元素C.tail<2>()为:" << endl << C.tail<2>() << endl
    16              << "获取从列向量B的第0个元素开始的2个元素B.segment(0, 2):" << endl << B.segment(0, 2) << endl
    17              << "获取从行向量C的第1个元素开始的3个元素C.segment<3>(1):" << endl << C.segment<3>(1) << endl
    18              /* 分块矩阵 */
    19              << "矩阵A的前两行中间列元素A.block(0, 1, 2, 1):" << endl << A.block(0, 1, 2, 1) << endl
    20              << "矩阵A的前两行中间列元素A.block<2, 1>(0, 1):" << endl << A.block<2, 1>(0, 1) << endl
    21              << "矩阵A的第二行元素A.row(1):" << endl << A.row(1) << endl
    22              << "矩阵A的第二列元素A.col(1):" << endl << A.col(1) << endl
    23              << "矩阵A的左边两列元素A.leftCols<2>():" << endl << A.leftCols<2>() << endl
    24              << "矩阵A的左边一列元素A.leftCols(1):" << endl << A.leftCols(1) << endl
    25              << "矩阵A的第二列第三列元素A.middleCols<2>(1):" << endl << A.middleCols<2>(1) << endl
    26              << "矩阵A的第二列元素A.middleCols(1, 1):" << endl << A.middleCols(1, 1) << endl
    27              << "矩阵A的左上角两行两列元素A.topLeftCorner(2, 2):" << endl << A.topLeftCorner(2, 2) << endl;

     矩阵元素交换:

    // Eigen                           // Matlab
    R.row(i) = P.col(j);               // R(i, :) = P(:, i)
    R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1])

     矩阵转置:

    1 // Eigen                           // Matlab
    2 R.adjoint()                        // R'
    3 R.transpose()                      // R.' or conj(R')
    4 R.diagonal()                       // diag(R)
    5 x.asDiagonal()                     // diag(x)
    6 R.transpose().colwise().reverse(); // rot90(R)
    7 R.conjugate()                      // conj(R)

    矩阵乘积:

    // Matrix-vector.  Matrix-matrix.   Matrix-scalar.
    y  = M*x;          R  = P*Q;        R  = P*s;
    a  = b*M;          R  = P - Q;      R  = s*P;
    a *= M;            R  = P + Q;      R  = P/s;
                       R *= Q;          R  = s*P;
                       R += Q;          R *= s;
                       R -= Q;          R /= s;

    矩阵内部元素操作:

    // Vectorized operations on each element independently
    // Eigen                  // Matlab
    R = P.cwiseProduct(Q);    // R = P .* Q
    R = P.array() * s.array();// R = P .* s
    R = P.cwiseQuotient(Q);   // R = P ./ Q
    R = P.array() / Q.array();// R = P ./ Q
    R = P.array() + s.array();// R = P + s
    R = P.array() - s.array();// R = P - s
    R.array() += s;           // R = R + s
    R.array() -= s;           // R = R - s
    R.array() < Q.array();    // R < Q
    R.array() <= Q.array();   // R <= Q
    R.cwiseInverse();         // 1 ./ P
    R.array().inverse();      // 1 ./ P
    R.array().sin()           // sin(P)
    R.array().cos()           // cos(P)
    R.array().pow(s)          // P .^ s
    R.array().square()        // P .^ 2
    R.array().cube()          // P .^ 3
    R.cwiseSqrt()             // sqrt(P)
    R.array().sqrt()          // sqrt(P)
    R.array().exp()           // exp(P)
    R.array().log()           // log(P)
    R.cwiseMax(P)             // max(R, P)
    R.array().max(P.array())  // max(R, P)
    R.cwiseMin(P)             // min(R, P)
    R.array().min(P.array())  // min(R, P)
    R.cwiseAbs()              // abs(P)
    R.array().abs()           // abs(P)
    R.cwiseAbs2()             // abs(P.^2)
    R.array().abs2()          // abs(P.^2)
    (R.array() < s).select(P,Q);  // (R < s ? P : Q)

    矩阵化简:

    // Reductions.
    int r, c;
    // Eigen                  // Matlab
    R.minCoeff()              // min(R(:))
    R.maxCoeff()              // max(R(:))
    s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
    s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
    R.sum()                   // sum(R(:))
    R.colwise().sum()         // sum(R)
    R.rowwise().sum()         // sum(R, 2) or sum(R')'
    R.prod()                  // prod(R(:))
    R.colwise().prod()        // prod(R)
    R.rowwise().prod()        // prod(R, 2) or prod(R')'
    R.trace()                 // trace(R)
    R.all()                   // all(R(:))
    R.colwise().all()         // all(R)
    R.rowwise().all()         // all(R, 2)
    R.any()                   // any(R(:))
    R.colwise().any()         // any(R)
    R.rowwise().any()         // any(R, 2)

    矩阵点乘

    // Dot products, norms, etc.
    // Eigen                  // Matlab
    x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen.
    x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex
    x.dot(y)                  // dot(x, y)
    x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry>

    矩阵类型转换:

    //// Type conversion
    // Eigen                           // Matlab
    A.cast<double>();                  // double(A)
    A.cast<float>();                   // single(A)
    A.cast<int>();                     // int32(A)
    A.real();                          // real(A)
    A.imag();                          // imag(A)
    // if the original type equals destination type, no work is done

    求解线性方程组Ax=b

    // Solve Ax = b. Result stored in x. Matlab: x = A  b.
    x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
    x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
    x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU>
    x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>
    x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD>
    // .ldlt() -> .matrixL() and .matrixD()
    // .llt()  -> .matrixL()
    // .lu()   -> .matrixL() and .matrixU()
    // .qr()   -> .matrixQ() and .matrixR()
    // .svd()  -> .matrixU(), .singularValues(), and .matrixV()

    矩阵特征值:

    // Eigenvalue problems
    // Eigen                          // Matlab
    A.eigenvalues();                  // eig(A);
    EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
    eig.eigenvalues();                // diag(val)
    eig.eigenvectors();               // vec
    // For self-adjoint matrices use SelfAdjointEigenSolver<>
  • 相关阅读:
    字符编码与解码详解
    【Java反射机制】用反射改进简单工厂模式设计
    数据结构
    根据 中序遍历 和 后序遍历构造树(Presentation)(C++)
    【动态规划】记忆搜索(C++)
    Linux环境下安装中山大学东校区iNode客户端
    webpack前端开发环境搭建
    CSS中line-height继承问题
    MySQL中MyISAM与InnoDB的主要区别对比
    JavaScript中易混淆的DOM属性及方法对比
  • 原文地址:https://www.cnblogs.com/fuzhuoxin/p/12600532.html
Copyright © 2011-2022 走看看