import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 定义一个初始化权重的函数
def weight_variables(shape):
w = tf.Variable(tf.random_normal(shape=shape,mean=0.0,stddev=1.0))
return w
# 定义一个初始化偏置的函数
def bias_variables(shape):
b = tf.Variable(tf.constant(0.0,shape=shape))
return b
def model():
'''
自定义的卷积模型
:return:
'''
# 1.准备数据的占位符 x [None,784] y_ture [None,10]
with tf.variable_scope('data'):
x = tf.placeholder(tf.float32,[None,784])
y_true = tf.placeholder(tf.int32,[None,10])
# 2. 一卷积层 卷积:5*5*1,,32个,strides=1 激活:tf.nn.relu 池化
with tf.variable_scope('conv1'):
# 随机初始化权重 偏置[32]
w_conv1 = weight_variables([5,5,1,32])
b_conv1 = bias_variables([32])
# 对x进行形状的改变[None,784] [None,28,28,1]
x_reshape = tf.reshape(x,[-1,28,28,1])
# [None,28,28,1]---->[None,28,28,32]
x_relu1 = tf.nn.relu(tf.nn.conv2d(x_reshape,w_conv1,strides=[1,1,1,1],padding='SAME') + b_conv1)
# 池化 2*2 , strides2 [None,28,28,32]---->[None,14,14,32]
x_pool1 = tf.nn.max_pool(x_relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
# 3. 二卷积层 卷积:5*5*32 64个filter,strides=1 激活:tf.nn.relu 池化:
with tf.variable_scope('conv2'):
# 随机初始化权重 权重:[5,5,32,64] 偏置[64]
w_conv2 = weight_variables([5,5,32,64])
b_conv2 = bias_variables([64])
# 卷积,激活,池化计算
# [None,14,14,32]---->[None,14,14,64]
x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1,w_conv2,strides=[1,1,1,1],padding='SAME') + b_conv2)
# 池化 2*2 strides 2,[None,14,14,64]--->[None,7,7,64]
x_pool2 = tf.nn.max_pool(x_relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
# 4. 全连接层 [None,7,7,64]--->[None,7*7*64]*[7*7*64,10] + [10] = [None,10]
with tf.variable_scope('conv2'):
# 随机初始化权重和偏置
w_fc = weight_variables([7*7*64,10])
b_fc = bias_variables([10])
# 修改形状 [None,7,7,64] --->[None,7*7*64]
x_fc_reshape = tf.reshape(x_pool2,[-1,7*7*64])
# 进行矩阵运算得出每个样本的10个结果
y_predict = tf.matmul(x_fc_reshape,w_fc) + b_fc
return x,y_true,y_predict
def conv_fc():
# 1. 获取真实数据
mnist = input_data.read_data_sets('./data/mnist/',one_hot=True)
# 2. 定义模型,得出输出
x,y_true,y_predict = model()
# 进行交叉熵损失计算
# 3. 求出所有样本的损失,然后求平均值
with tf.variable_scope('soft_cross'):
# 求平均交叉熵损失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=y_predict))
# 4. 梯度下降求出损失
with tf.variable_scope('optimizer'):
train_op = tf.train.GradientDescentOptimizer(0.0001).minimize((loss))
# 5. 计算准确率
with tf.variable_scope('acc'):
equal_list = tf.equal(tf.argmax(y_true,1),tf.argmax(y_predict,1))
# equal_list None个样本 [1,0,1,0,0,0,1,1,...]
accracy = tf.reduce_mean(tf.cast(equal_list,tf.float32))
# 定义一个初始化变量的op
init_op = tf.global_variables_initializer()
# 开启会话运行
with tf.Session() as sess:
sess.run(init_op)
# 循环去训练
for i in range(1000):
# 取出真实存在的特征值和目标值
mnist_x,mnist_y = mnist.train.next_batch(50)
# 运行train_op训练
sess.run(train_op,feed_dict={x:mnist_x,y_true:mnist_y})
print('训练第%d步,准确率为:%f' % (i,sess.run(accracy,feed_dict={x:mnist_x,y_true:mnist_y})))
return None
if __name__ == '__main__':
conv_fc()