zoukankan      html  css  js  c++  java
  • Storm-源码分析-Topology Submit-Executor

    在worker中通过executor/mk-executor worker e, 创建每个executor

    (defn mk-executor [worker executor-id]
      (let [executor-data (mk-executor-data worker executor-id) ;;1.mk-executor-data 
            _ (log-message "Loading executor " (:component-id executor-data) ":" (pr-str executor-id))
            task-datas (->> executor-data
                            :task-ids
                            (map (fn [t] [t (task/mk-task executor-data t)])) ;;2.mk-task 
                            (into {})
                            (HashMap.))
            _ (log-message "Loaded executor tasks " (:component-id executor-data) ":" (pr-str executor-id))
            report-error-and-die (:report-error-and-die executor-data)
            component-id (:component-id executor-data)
    
            ;;3.创建threads 
            ;; starting the batch-transfer->worker ensures that anything publishing to that queue 
            ;; doesn't block (because it's a single threaded queue and the caching/consumer started
            ;; trick isn't thread-safe)
            system-threads [(start-batch-transfer->worker-handler! worker executor-data)]
            handlers (with-error-reaction report-error-and-die
                       (mk-threads executor-data task-datas))
            threads (concat handlers system-threads)]
        
        ;;使用schedule-recurring定期产生SYSTEM_TICK(触发spout pending rotate) 
        (setup-ticks! worker executor-data) 

    1. mk-executor-data

    (defn mk-executor-data [worker executor-id]
      (let [worker-context (worker-context worker)
            task-ids (executor-id->tasks executor-id) ;;包含的tasks
            component-id (.getComponentId worker-context (first task-ids)) ;;所属于的component
            storm-conf (normalized-component-conf (:storm-conf worker) worker-context component-id)
            executor-type (executor-type worker-context component-id) ;;executor类型, blot或者spout
            batch-transfer->worker (disruptor/disruptor-queue   ;;executor的发送缓存queue
                                      (storm-conf TOPOLOGY-EXECUTOR-SEND-BUFFER-SIZE)
                                      :claim-strategy :single-threaded
                                      :wait-strategy (storm-conf TOPOLOGY-DISRUPTOR-WAIT-STRATEGY))
            ]
        (recursive-map
         :worker worker
         :worker-context worker-context
         :executor-id executor-id
         :task-ids task-ids
         :component-id component-id
         :open-or-prepare-was-called? (atom false)
         :storm-conf storm-conf
         :receive-queue ((:executor-receive-queue-map worker) executor-id) ;;取出executor所对应的disruptor queue
         :storm-id (:storm-id worker)
         :conf (:conf worker)
         :shared-executor-data (HashMap.)
         :storm-active-atom (:storm-active-atom worker)
         :batch-transfer-queue batch-transfer->worker
         :transfer-fn (mk-executor-transfer-fn batch-transfer->worker) ;;(1.1) 
         :suicide-fn (:suicide-fn worker)
         :storm-cluster-state (cluster/mk-storm-cluster-state (:cluster-state worker))
         :type executor-type
         ;; TODO: should refactor this to be part of the executor specific map (spout or bolt with :common field)
         :stats (mk-executor-stats <> (sampling-rate storm-conf)) ;;(1.2)
         :interval->task->metric-registry (HashMap.)
         :task->component (:task->component worker)
         :stream->component->grouper (outbound-components worker-context component-id)
         :report-error (throttled-report-error-fn <>)
         :report-error-and-die (fn [error] ;;将error写到zk的error目录下,其他daemon进程可以知道
                                 ((:report-error <>) error)
                                 ((:suicide-fn <>)))
         :deserializer (KryoTupleDeserializer. storm-conf worker-context)
         :sampler (mk-stats-sampler storm-conf) ;;1.3 mk-stats-sampler 
         ;; TODO: add in the executor-specific stuff in a :specific... or make a spout-data, bolt-data function?
         )))
     

    1.1 mk-executor-transfer-fn

    executor会把需要发送的tuple缓存到batch-transfer->worker queue中
    参考下面的comments, 为了避免component block (大量的tuple没有被及时处理), 额外创建了overflow buffer, 只有当这个buffer也满了, 才停止nextTuple(对于spout executor比较需要overflow buffer)

            ;; the overflow buffer is used to ensure that spouts never block when emitting
            ;; this ensures that the spout can always clear the incoming buffer (acks and fails), which
            ;; prevents deadlock from occuring across the topology (e.g. Spout -> Bolt -> Acker -> Spout, and all
            ;; buffers filled up)
            ;; when the overflow buffer is full, spouts stop calling nextTuple until it's able to clear the overflow buffer
            ;; this limits the size of the overflow buffer to however many tuples a spout emits in one call of nextTuple, 
            ;; preventing memory issues
            overflow-buffer (LinkedList.)]

    返回fn, fn用于将[task, tuple]放到overflow-buffer或者batch-transfer->worker queue中

    注意, 这是executor->transfer-fn, 不同于worker->transfer-fn, 名字起的不好, 会混淆
    executor的transfer-fn将tuple缓存到executor的batch-transfer->worker, 而worker->transfer-fn将tuple发送到worker的transfer queue

    ;; in its own function so that it can be mocked out by tracked topologies
    (defn mk-executor-transfer-fn [batch-transfer->worker]
      (fn this
        ([task tuple block? ^List overflow-buffer]
          (if (and overflow-buffer (not (.isEmpty overflow-buffer))) ;;overflow存在并且不为空,说明queue已经满了,所以直接放overflow-buffer中
            (.add overflow-buffer [task tuple])
            (try-cause
              (disruptor/publish batch-transfer->worker [task tuple] block?)
            (catch InsufficientCapacityException e
              (if overflow-buffer
                (.add overflow-buffer [task tuple])
                (throw e))
              ))))
        ([task tuple overflow-buffer]
          (this task tuple (nil? overflow-buffer) overflow-buffer))
        ([task tuple]
          (this task tuple nil)
          )))

    1.2 mk-executor-stats <> (sampling-rate storm-conf)

    Storm-源码分析-Stats (backtype.storm.stats)

     

    1.3 mk-stats-sampler

    根据conf里面的sampling-rate创建一个sampler

    (defn mk-stats-sampler [conf]
      (even-sampler (sampling-rate conf)))

    这里创建的是even-sampler,

    (defn even-sampler [freq]
      (let [freq (int freq)
            start (int 0)
            r (java.util.Random.)
            curr (MutableInt. -1)
            target (MutableInt. (.nextInt r freq))] ;;[0,freq]中的随机值
        (with-meta
          (fn []
            (let [i (.increment curr)]
              (when (>= i freq)
                (.set curr start)
                (.set target (.nextInt r freq))))
              (= (.get curr) (.get target))) ;;FP没有直接赋值, 所以==简化为=
          {:rate freq})))
    (defn sampler-rate [sampler]
      (:rate (meta sampler)))

    even-sampler, 返回的是个fn ,并且通过with-meta添加metadata({:rate freq})
    所以, 通过(:rate (meta sampler)), 可以从sampler的meta里面取出rate值

    sampler就是fn, 每次调用都会返回(= curr target)
    curr从start开始递增, 在达到target之前, 调用fn都是返回false
    当curr等于target时, 调用fn返回true
    当curr大于target时, 从新随机生成target, 将curr清零

    所以sampler实际产生的效果, 就是不停的调用sampler, 会随机出现若干次false和一次true (在freq的范围内)
    从而达到sampler的效果, 只有是true的时候才取样

    其实对于简单的sampler, 比如rate是20%, 可以简单的每跳过4个取一个, 但是这样可能的问题是, 取样的规律性太强, 如果数据恰好符合你的规律, 比如5倍数的数据相同, 就会有问题
    所以这里为了增加随机性, 采用这样的实现
    并且这里对闭包和metadata的应用, 值得借鉴

     

    2.mk-task, 创建task

    (task/mk-task executor-data t)

    Storm-源码分析-Topology Submit-Task

     

    3.创建threads

    3.1 batch-transfer-queue handle thread, spout发送线程

    从batch-transfer-queue取出messages, 没有到达batchend时, 放到cached-emit中的arraylist中
    当达到batchend时, 使用transfer-fn将messages发送到transfer-queue (spout应该没有发送给自己的tuple吧)

    (defn start-batch-transfer->worker-handler! [worker executor-data]
      (let [worker-transfer-fn (:transfer-fn worker)
            cached-emit (MutableObject. (ArrayList.)) ;;用于cache所有messages,直到batchend
            storm-conf (:storm-conf executor-data)
            serializer (KryoTupleSerializer. storm-conf (:worker-context executor-data))
            ]
        (disruptor/consume-loop*
          (:batch-transfer-queue executor-data)
          (disruptor/handler [o seq-id batch-end?]
            (let [^ArrayList alist (.getObject cached-emit)]
              (.add alist o)
              (when batch-end?
                (worker-transfer-fn serializer alist)
                (.setObject cached-emit (ArrayList.))
                )))
          :kill-fn (:report-error-and-die executor-data))))

     

    Worker, transfer-fn

    将task分为local和remote
    对于local的, 使用local-transfer将messages发送到对应的recieve-queue里面
    而对于remote的, 使用disruptor/publish发送到transfer-queue里面

    storm使用kryo作为其java的序列化F/W (http://code.google.com/p/kryo/)

    (defn mk-transfer-fn [worker]
      (let [local-tasks (-> worker :task-ids set)
            local-transfer (:transfer-local-fn worker)
            ^DisruptorQueue transfer-queue (:transfer-queue worker)]
        (fn [^KryoTupleSerializer serializer tuple-batch]
          (let [local (ArrayList.)
                remote (ArrayList.)]
            (fast-list-iter [[task tuple :as pair] tuple-batch]
              (if (local-tasks task)
                (.add local pair)
                (.add remote pair)
                ))
            (local-transfer local)
            ;; not using map because the lazy seq shows up in perf profiles
            (let [serialized-pairs (fast-list-for [[task ^TupleImpl tuple] remote] [task (.serialize serializer tuple)])]
              (disruptor/publish transfer-queue serialized-pairs)

     

    3.2 executor的执行thread

    try…catch mk-threads函数, 如果发生异常将error写到zk, 以便其他的daemon能及时知道

    handlers (with-error-reaction report-error-and-die
                       (mk-threads executor-data task-datas))

    Storm-源码分析-Topology Submit-Executor-mk-threads

  • 相关阅读:
    Jing : 记录屏幕上的图像、录像,拿来与朋友共享
    VistaDB 数据库,.NET的新选择
    获取指定网站的屏幕抓图
    XOOXML 操控 Excel 2007的组件
    MySQL 的一个奇怪错误
    又一个.NET代码生成器
    A .NET API for the Google Maps Geocoder
    ASP.NET + MySQL 开发笔记 MembershipProvider 和 RoleProvider 用法
    Educational Codeforces Round 96 (Rated for Div. 2)
    Codeforces Round #676 (Div. 2)
  • 原文地址:https://www.cnblogs.com/fxjwind/p/3238673.html
Copyright © 2011-2022 走看看