zoukankan      html  css  js  c++  java
  • 模拟极验验证码登陆

    from selenium import webdriver
    from selenium.webdriver.support.ui import WebDriverWait # 等待元素加载的
    from selenium.webdriver.common.action_chains import ActionChains  #拖拽
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.common.exceptions import TimeoutException, NoSuchElementException
    from selenium.webdriver.common.by import By
    from PIL import Image
    import requests
    import time
    import os
    import re
    import random
    from io import BytesIO
    
    abspath = os.path.abspath(r"C:UsersmeilangAppDataLocalGoogleChromeApplicationchromedriver.exe")
    
    
    def merge_image(image_file,location_list):
        """
         拼接图片
        :param image_file:
        :param location_list:
        :return:
        """
        im = Image.open(image_file)
        im.save('code.jpg')
        new_im = Image.new('RGB',(260,116))
        # 把无序的图片 切成52张小图片
        im_list_upper = []
        im_list_down = []
        # print(location_list)
        for location in location_list:
            # print(location['y'])
            if location['y'] == -58: # 上半边
                im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
            if location['y'] == 0:  # 下半边
                im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))
    
        x_offset = 0
        for im in im_list_upper:
            new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上
            x_offset += im.size[0]
    
        x_offset = 0
        for im in im_list_down:
            new_im.paste(im,(x_offset,58))
            x_offset += im.size[0]
        new_im.show()
        return new_im
    
    def get_image(driver,div_path):
        '''
        下载无序的图片  然后进行拼接 获得完整的图片
        :param driver:
        :param div_path:
        :return:
        '''
        time.sleep(2)
        background_images = driver.find_elements_by_xpath(div_path)
        location_list = []
        for background_image in background_images:
            location = {}
            result = re.findall('background-image: url("(.*?)"); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
            # print(result)
            location['x'] = int(result[0][1])
            location['y'] = int(result[0][2])
    
            image_url = result[0][0]
            location_list.append(location)
    
        print('==================================')
        image_url = image_url.replace('webp','jpg')
        # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
        image_result = requests.get(image_url).content
        # with open('1.jpg','wb') as f:
        #     f.write(image_result)
        image_file = BytesIO(image_result) # 是一张无序的图片
        image = merge_image(image_file,location_list)
    
        return image
    
    def get_track(distance):
        '''
        拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
        匀变速运动基本公式:
        ①v=v0+at
        ②s=v0t+(1/2)at²
        ③v²-v0²=2as
    
        :param distance: 需要移动的距离
        :return: 存放每0.2秒移动的距离
        '''
        # 初速度
        v=0
        # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
        t=0.2
        # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
        tracks=[]
        # 当前的位移
        current=0
        # 到达mid值开始减速
        mid=distance * 7/8
    
        distance += 10  # 先滑过一点,最后再反着滑动回来
        # a = random.randint(1,3)
        while current < distance:
            if current < mid:
                # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
                a = random.randint(2,4)  # 加速运动
            else:
                a = -random.randint(3,5) # 减速运动
    
            # 初速度
            v0 = v
            # 0.2秒时间内的位移
            s = v0*t+0.5*a*(t**2)
            # 当前的位置
            current += s
            # 添加到轨迹列表
            tracks.append(round(s))
    
            # 速度已经达到v,该速度作为下次的初速度
            v= v0+a*t
    
        # 反着滑动到大概准确位置
        for i in range(4):
           tracks.append(-random.randint(2,3))
        for i in range(4):
           tracks.append(-random.randint(1,3))
        return tracks
    
    
    def get_distance(image1,image2):
        '''
          拿到滑动验证码需要移动的距离
          :param image1:没有缺口的图片对象
          :param image2:带缺口的图片对象
          :return:需要移动的距离
          '''
        # print('size', image1.size)
    
        threshold = 50
        for i in range(0,image1.size[0]):  # 260
            for j in range(0,image1.size[1]):  # 160
                pixel1 = image1.getpixel((i,j))
                pixel2 = image2.getpixel((i,j))
                res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差
                res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差
                res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差
                if res_R > threshold and res_G > threshold and res_B > threshold:
                    return i  # 需要移动的距离
    
    
    
    def main_check_code(driver, element):
        """
         拖动识别验证码
        :param driver: 
        :param element: 
        :return: 
        """
        image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div')
        image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div')
        # 图片上 缺口的位置的x坐标
    
        # 2 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
        l = get_distance(image1, image2)
        print('l=',l)
        # 3 获得移动轨迹
        track_list = get_track(l)
        print('第一步,点击滑动按钮')
        ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放
        time.sleep(1)
        print('第二步,拖动元素')
        for track in track_list:
             ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()#鼠标移动到距离当前位置(x,y)
             time.sleep(0.002)
        # if l>100:
    
        ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform()
        time.sleep(1)
        print('第三步,释放鼠标')
        ActionChains(driver).release(on_element=element).perform()
        time.sleep(5)
    
    
    def main_check_slider(driver):
        """
        检查滑动按钮是否加载
        :param driver: 
        :return: 
        """
        while True:
            try :
                driver.get('http://www.cnbaowen.net/api/geetest/')
                element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob')))
                if element:
                    return element
            except TimeoutException as e:
                print('超时错误,继续')
                time.sleep(5)
    
    
    if __name__ == '__main__':
        try:
            count = 6  # 最多识别6次
            driver = webdriver.Chrome(executable_path=abspath)
            # 等待滑动按钮加载完成
            element = main_check_slider(driver)
            while count > 0:
                main_check_code(driver,element)
                time.sleep(2)
                try:
                    success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success')
                    # 得到成功标志
                    print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success'))
                    success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element))
                    if success_images:
                        print('成功识别!!!!!!')
                        count = 0
                        break
                except NoSuchElementException as e:
                    print('识别错误,继续')
                    count -= 1
                    time.sleep(2)
            else:
                print('too many attempt check code ')
                exit('退出程序')
        finally:
            driver.close()
    

      参考:https://www.cnblogs.com/xiao-apple36/p/8878960.html

  • 相关阅读:
    109. 有序链表转换二叉搜索树
    108. 将有序数组转换为二叉搜索树
    235. 二叉搜索树的最近公共祖先
    538. 把二叉搜索树转换为累加树
    230. 二叉搜索树中第K小的元素
    669. 修剪二叉搜索树
    513. 找树左下角的值
    637. 二叉树的层平均值
    671. 二叉树中第二小的节点
    DDL-Oracle中的5种约束总结(未完待续)
  • 原文地址:https://www.cnblogs.com/fyandy/p/9863509.html
Copyright © 2011-2022 走看看