欧拉回路具体来说比较简单,说起来就是以前玩过的一笔画,只不过真正的推出来公式和规律了(终于不用瞎找了).
大佬博客 : https://www.cnblogs.com/zdblog/articles/3725858.html
欧拉通路: 通过图中每条边且只通过一次,并且经过每一顶点的通路
欧拉回路: 通过图中每条边且只通过一次,并且经过每一顶点的回路
有向图的基图:忽略有向图所有边的方向,得到的无向图称为该有向图的基图。
无向图
设G是连通无向图,则称经过G的每条边一次并且仅一次的路径为欧拉通路;
如果欧拉通路是回路(起点和终点是同一个顶点),则称此回路是欧拉回路
具有欧拉回路的无向图G成为欧拉图
有向图
(1)设D是有向图,D的基图连通,则称经过D的每条边一次并且仅有一次的有向路径为 有向欧拉通路
(2)如果有向欧拉通路是有向回路,则称此有向回路为 有向欧拉回路
(3)具有有向欧拉回路的图D称为有向欧拉图
定理
无向图G存在欧拉通路的充要条件是:G为连通图,并且G仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点。
推论
(1) 当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点;
(2)当G是无奇度结点的连通图时,G必有欧拉回路
(3)G为欧拉图(存在欧拉回路)的充分必要条件是 G为无奇度结点的连通图
(有向图) 定理
有向图D存在欧拉通路的充要条件是:D为有向图,D的基图连通,并且所有顶点的出度与入度相等;或者 除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度与入度之差为-1.
推论
(1)当D除出、入度之差为1,-1的两个顶点之外,其余顶点的出度与入度相等时,D的有向欧拉通路必以出、入度之差为1的顶点作为始点,以出、入度之差为-1的顶点作为终点。
(2)当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路。
(3)有向图D为有向欧拉图的充要条件是 D的基图为连通图,并且所有顶点的出、入度都相等。
欧拉回路的求解
两种方法:(1)DFS搜索 (Fleury)佛罗莱算法
(1)DFS搜索 思想求解欧拉回路的思路为:利用欧拉定理判断出一个图存在欧拉通路或欧拉回路后,选择一个正确的起始顶点,用DFS算法遍历所有的边(每条边只遍历一次),遇到走不通就回退。在搜索前进方向上将遍历过的边按顺序记录下来。这组边的排列就组成了一条欧拉通路或回路。
(2) (Fleury)佛罗莱算法
设G为一个无向欧拉图,求G中一条欧拉回路的算法如下:
(1) 任取G中一顶点v0,令P0=v0;
(2)假设沿Pi=v0e1v1e2v2......eivi走到顶点vi,按下面方法从E(G)-{e1,e2,...,ei}中选ei+1。
ei+1与vi相关联
除非无别的边可供选择,否则ei+1不应该是Gi=G-{e1,e2,...,ei}中的桥。
(3)当(2)不能再进行时算法停止。
可以证明的是,当算法停止时,所得到的简单回路Pm=v0e1v1e2v2......emvm,(vm=v0)为G中一条欧拉回路。
备注知识:
设无向图G(V,E)为连通图,若边集E1属于E,在图G中删除E1中所有的边后得到的子图是不连通的,而删除了E1的任一真子集后得到的子图是连通图,则称E1是G的一个割边集。若一条边构成一个割边集,则称该边为割边,或桥
比较不错的概念,反正我自己写是肯定写不出来的,接下来有一道简单题可以试试手
题目链接 : https://www.luogu.org/problemnew/show/P1341
ac代码
#include<bits/stdc++.h> using namespace std; int tu[500][500]; int biao[500]; char c[10001]; int ge; void dfs(int dang){ for(int i=0;i<500;i++){ if(tu[dang][i]==1){ //printf("%c %c %d %d",dang,i,dang,i); tu[dang][i]=0; tu[i][dang]=0; dfs(i); } } c[ge++]=dang; } int main() { int n; scanf("%d ",&n); memset(tu,0,sizeof(tu)); memset(biao,0,sizeof(biao)); for(int i=0;i<n;i++){ char x[5]; scanf("%s",x); tu[x[0]][x[1]]=1; tu[x[1]][x[0]]=1; biao[x[0]]++; biao[x[1]]++; } int minn=100010; int ha=0; for(int i=0;i<500;i++){ if(biao[i]%2!=0){ ha++; minn=min(minn,i); } } if(ha!=0&&ha!=2){ printf("No Solution "); return 0; } if(minn==100010){ for(int i=0;i<500;i++){ if(biao[i]!=0&&biao[i]%2==0){ minn=i; break; } } } ge=0; dfs(minn); if(ge>=n+1){ for(int i=ge-1;i>=0;i--){ printf("%c",c[i]); } printf(" "); } else{ printf("No Solution "); } return 0; }