zoukankan      html  css  js  c++  java
  • 2020系统综合实践 第7次实践作业

    一、 在树莓派中安装opencv库

    (1)安装依赖

    # 更新和升级任何现有的软件包
    sudo apt-get update && sudo apt-get upgrade 
    # 安装开发工具CMake,帮助我们配置OpenCV构建过程
    sudo apt-get install build-essential cmake pkg-config
    # 图像I/O包,允许我们从磁盘加载各种图像文件格式。这种文件格式的例子包括JPEG,PNG,TIFF等
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    # 视频I/O包。这些库允许我们从磁盘读取各种视频文件格式,并直接处理视频流
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    # OpenCV库附带一个名为highgui的子模块 ,用于在我们的屏幕上显示图像并构建基本的GUI。为了编译 highgui模块,我们需要安装GTK开发库
    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    # OpenCV中的许多操作(即矩阵操作)可以通过安装一些额外的依赖关系进一步优化
    sudo apt-get install libatlas-base-dev gfortran
    # 安装Python 2.7和Python 3头文件,以便我们可以用Python绑定来编译OpenCV
    sudo apt-get install python2.7-dev python3-dev
    

    image.png

    (2)下载opencv源码

    cd ~
    wget -O opencv.zip https://github.com/Itseez/opencv/archive/4.1.2.zip
    unzip opencv.zip
    wget -O opencv_contrib.zip https://github.com/Itseez/opencv_contrib/archive/4.1.2.zip
    unzip opencv_contrib.zip
    

    image.png

    (3)安装pip

    wget https://bootstrap.pypa.io/get-pip.py
    sudo python get-pip.py
    sudo python3 get-pip.py
    

    image.png

    (4)安装python虚拟机

    sudo pip install virtualenv virtualenvwrapper
    sudo rm -rf ~/.cache/pip
    

    image.png

    • 配置~/.profile ,添加如下,
    export WORKON_HOME=$HOME/.virtualenvs
    export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
    export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/bin/virtualenv
    source /usr/local/bin/virtualenvwrapper.sh
    export VIRTUALENVWRAPPER_ENV_BIN_DIR=bin
    

    image.png

    • 并使之生效
    source ~/.profile
    

    image.png

    • 使用Python3安装虚拟机
     mkvirtualenv cv -p python3
    

    image.png

    提醒:后续所有操作均在虚拟机中

    • 安装numpy
    pip install numpy
    

    image.png

    (5)编译opencv

    cd ~/opencv-4.1.2/
    mkdir build
    cd build
    cmake -D CMAKE_BUILD_TYPE=RELEASE 
        -D CMAKE_INSTALL_PREFIX=/usr/local 
        -D INSTALL_PYTHON_EXAMPLES=ON 
        -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.1.2/modules 
        -D BUILD_EXAMPLES=ON ..
    

    image.png

    • 增大交换空间 CONF_SWAPSIZE=1024
    sudo nano /etc/dphys-swapfile  #虚拟机中sudo才可以修改
    

    image.png

    • 重启swap服务并开始编译
    sudo /etc/init.d/dphys-swapfile stop
    sudo /etc/init.d/dphys-swapfile start
    make -j4 
    

    image.png

    (6)安装opencv

    sudo make install
    sudo ldconfig
    

    image.png

    • 检查安装位置
    ls -l /usr/local/lib/python3.7/site-packages
    ls -l /usr/local/lib/python3.7/dist-packages
    

    image.png

    cd  ~/.virtualenvs/cv/lib/python3.7/site-packages/
    ln -s /usr/local/lib/python3.7/site-packages/cv2 cv2
    

    image.png

    (7)验证安装

    source ~/.profile 
    workon cv
    python
    import cv2
    cv2.__version__
    

    image.png

    提示:退出python虚拟机命令deactivate

    二、 使用opencv和python控制树莓派的摄像头

    (1)picamera模块安装

    • 开启虚拟机
    source ~/.profile
    workon cv
    

    再次提醒:后续所有操作均在虚拟机中

    • 安装picamera
    pip install "picamera[array]"
    

    image.png

    (2)在Python代码中导入OpenCV控制摄像头

    • Python代码
    # import the necessary packages
    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
    # initialize the camera and grab a reference to the raw camera capture
    camera = PiCamera()
    rawCapture = PiRGBArray(camera)
    # allow the camera to warmup
    time.sleep(1)
    # grab an image from the camera
    camera.capture(rawCapture, format="bgr")
    image = rawCapture.array
    # display the image on screen and wait for a keypress
    cv2.imshow("Image", image)
    cv2.waitKey(0)
    

    image.png

    三、 利用树莓派的摄像头实现人脸识别

    (1)安装所需库

    pip install dlib
    pip install face_recognition
    

    image.png

    (2)准备好需要用到的图片和代码文件

    image.png

    • facerec_on_raspberry_pi.py代码
    # This is a demo of running face recognition on a Raspberry Pi.
    # This program will print out the names of anyone it recognizes to the console.
    
    # To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
    # the picamera[array] module installed.
    # You can follow this installation instructions to get your RPi set up:
    # https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
    
    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    obama_image = face_recognition.load_image_file("obama_small.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "Barack Obama"
    
            print("I see someone named {}!".format(name))
    
    
    • facerec_from_webcam_faster.py代码
    import face_recognition
    import cv2
    import numpy as np
    
    # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
    # other example, but it includes some basic performance tweaks to make things run a lot faster:
    #   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
    #   2. Only detect faces in every other frame of video.
    
    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    obama_image = face_recognition.load_image_file("obama.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    biden_image = face_recognition.load_image_file("biden.jpg")
    biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        obama_face_encoding,
        biden_face_encoding
    ]
    known_face_names = [
        "Barack Obama",
        "Joe Biden"
    ]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    
    while True:
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
    
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    
    

    (3)人脸识别

    image.png
    image.png

    四、 结合微服务的进阶任务

    (1)安装Docker

    • 下载安装脚本
    curl -fsSL https://get.docker.com -o get-docker.sh
    

    image.png

    • 执行安装脚本(使用阿里云镜像)
    sh get-docker.sh --mirror Aliyun
    

    image.png

    • 将当前用户加入docker用户组
    sudo usermod -aG docker $USER
    
    • 查看docker版本,验证是否安装成功
    docker --version
    

    image.png

    (2).配置docker的镜像加速

    • 写加速器地址
    sudo nano /etc/docker/daemon.json
    

    image.png

    • 重启docker
    service docker restart
    

    (3)定制opencv镜像

    • 拉取镜像
    sudo docker pull sixsq/opencv-python
    

    image.png

    • 创建并运行容器
    sudo docker run -it sixsq/opencv-python /bin/bash
    
    • pip安装 "picamera[array]" dlib face_recognition
    pip install "picamera[array]" 
    pip install dlib 
    pip install face_recognition
    

    image.png
    (face_recognition可离线安装)

    sudo docker cp face_recognition_models-0.3.0-py2.py3-none-any.whl e8e0d5cfb823:/home
    sudo docker cp face_recognition-1.3.0-py2.py3-none-any.whl e8e0d5cfb823:/home
    

    image.png

    • commit镜像
    sudo docker commit priceless_chatelet gkd
    

    image.png

    (4)自定义镜像

    • 创建文件
    FROM gkd
    
    MAINTAINER GROUP08
    
    RUN mkdir /myapp
    
    WORKDIR /myapp
    
    COPY myapp .
    

    image.png

    • 生成镜像
    sudo docker build -t myopencv .
    

    image.png

    • 运行代码
    sudo docker run -it --device=/dev/vchiq --device=/dev/video0 --name face myopencv
    python3 facerec_on_raspberry_pi.py
    

    image.png
    image.png

    (5)opencv的docker容器中运行facerec_from_webcam_faster.py

    • 在Windows系统中安装Xming
    • 检查树莓派的ssh配置中的X11是否开启
    cat /etc/ssh/sshd_config
    

    image.png

    • 启动putty
      image.png

    • 查看DISPLAY环境变量值

    printenv
    

    image.png

    • 编写run.sh
    #sudo apt-get install x11-xserver-utils
    xhost +
    docker run -it 
            --net=host 
            -v $HOME/.Xauthority:/root/.Xauthority 
            -e DISPLAY=:10.0  
            -e QT_X11_NO_MITSHM=1 
            --device=/dev/vchiq 
            --device=/dev/video0 
            --name facerecgui 
            myopencv7 
    	python3 facerec_from_webcam_faster.py
    
    • 启动
    sh run.sh
    

    结果和上面相同

    五、 以小组为单位,发表一篇博客,记录遇到的问题和解决方法,提供小组成员名单、分工、各自贡献以及在线协作的图片

    1.困难

    (1)安装依赖时报错,提示要安装的xxx依赖于xxx,但是xxx不会被安装。

    解决:重新烧录一个干净的系统

    (2)系统重装导致ssh密匙重复

    解决:删掉密匙

    ssh-keygen -R 192.168.43.167
    
    (3)因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系

    解决:用aptitude install下载,可以在下载软件包的同时选择下载相关依赖

    sudo apt-get install aptitude
    sudo aptitude install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo aptitude install libxvidcore-dev libx264-dev
    sudo aptitude install libgtk2.0-dev libgtk-3-dev
    sudo aptitude install libatlas-base-dev gfortran
    sudo aptitude install python2.7-dev python3-dev
    
    (4)编译OpenCV出错

    image.png
    解决方案

    cd /home/pi/opencv_contrib-4.1.2/modules/xfeatures2d/src
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_lbgm.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_256.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_128.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_064.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm_hd.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm_bi.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_120.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_64.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_48.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_80.i
    
    (5)raw.githubusercontent.com (raw.githubusercontent.com)|0.0.0.0|:443... 失败:拒绝连接

    解决方案

    sudo nano /etc/hosts
    151.101.76.133 raw.githubusercontent.com
    
    (6)cv2库用不了

    image.png
    解决:依赖没下全,少libgtk2.0-dev,重新下载,再重新编译。

    (7)libgtk2.0-dev下载不了
    libgtk2.0-dev : 依赖: libgtk2.0-0 (= 2.24.32-3) 但是 2.24.32-3+rpt1 已安装
     libcairo2-dev : 依赖: libcairo2 (= 1.16.0-4) 但是 1.16.0-4+rpt1 已安装
                     依赖: libcairo-gobject2 (= 1.16.0-4) 但是 1.16.0-4+rpt1 已安装
     libpng-dev : 冲突: libpng12-dev 但是 1.2.54-6 已安装
     libpng12-dev : 冲突: libpng-dev 但是 1.6.36-6 将被安装
     libpixman-1-dev : 依赖: libpixman-1-0 (= 0.36.0-1) 但是 0.36.0-1+rpt1 已安装
    

    解决:降级再下载

    (8)face_recognition下载太慢

    解决:先在本机下载whl文件,再移动到树莓派

    2.分工

    学号名称任务
    031702606 余琳玲 查找资料、解决问题
    111700306 陈佳雯 查找资料、解决问题
    031702616 林涛 实际操作、编写博客

    3.在线协作

      • 耗时:16h
        image.png
  • 相关阅读:
    Redis和Memcache区别,优缺点对比
    C# 修改Config文件,增删查改
    SQL SERVER-时间戳(timestamp)与时间格式(datetime)互相转换
    post数据时报错:远程服务器返回错误: (400) 错误的请求。
    Win10 通过附加进程调试时出现“此任务要求应用程序具有提升的权限”
    谈谈技术原则,技术学习方法,代码阅读及其它
    C# 对象与JSON字符串互相转换的三种方式
    JSON.stringify 语法实例讲解
    前端Json对象与Json字符串互转(4种转换方式)
    Razor引擎学习:RenderBody,RenderPage和RenderSection
  • 原文地址:https://www.cnblogs.com/gallium697/p/13094924.html
Copyright © 2011-2022 走看看