N-Queens
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
这题和Sudoku Solver是一个套路,回溯法尝试所有可能性,将可行解的保存起来。可以对比着看。
由于这里路径尝试本质上是有序的,即1~9逐个尝试,因此无需额外设置状态位记录已经尝试过的方向。
我们先用vector<int>来存放可行解,下标代表行号,元素代表列号。
因此上图中Solution 1用vector<int>表示就是[1,3,0,2]
解题流程就是在下一行中尝试列数(0~n-1),如果可行则递归下去,如果不可行则弹出继续尝试下一列。
最后将vector<vector<int> > 转为vector<vector<string> >即可。
class Solution { public: vector<vector<string> > solveNQueens(int n) { return convert(solve(n), n); } vector<vector<int> > solve(int n) { vector<vector<int> > ret; vector<int> cur; Helper(ret, cur, 0, n); return ret; } void Helper(vector<vector<int> >& ret, vector<int> cur, int pos, int n) { if(pos == n) ret.push_back(cur); else { for(int i = 0; i < n; i ++) { cur.push_back(i); if(check(cur)) Helper(ret, cur, pos+1, n); cur.pop_back(); } } } bool check(vector<int> cur) { int size = cur.size(); int loc = cur[size-1]; for(int i = 0; i < size-1; i ++) { if(cur[i] == loc) return false; else if(abs(cur[i]-loc) == abs(i-size+1)) return false; } return true; } vector<vector<string> > convert(vector<vector<int> > ret, int n) { vector<vector<string> > retStr; for(int i = 0; i < ret.size(); i ++) { vector<string> curStr; for(int j = 0; j < n; j ++) { string loc(n, '.'); loc[ret[i][j]] = 'Q'; curStr.push_back(loc); } retStr.push_back(curStr); } return retStr; } };