Clone Graph
Clone an undirected graph. Each node in the graph contains a label
and a list of its neighbors
.
OJ's undirected graph serialization:
Nodes are labeled uniquely.
We use#
as a separator for each node, and ,
as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by #
.
- First node is labeled as
0
. Connect node0
to both nodes1
and2
. - Second node is labeled as
1
. Connect node1
to node2
. - Third node is labeled as
2
. Connect node2
to node2
(itself), thus forming a self-cycle.
Visually, the graph looks like the following:
1 / / 0 --- 2 / \_/
这题只需一边遍历一遍复制就可以了。
因此至少可以用三种方法:
1、广度优先遍历(BFS)
2、深度优先遍历(DFS)
2.1、递归
2.2、非递归
解法一:广度优先遍历
变量说明:
映射表m用来保存原图结点与克隆结点的对应关系。
映射表visited用来记录已经访问过的原图结点,防止循环访问。
队列q用于记录广度优先遍历的层次信息。
/** * Definition for undirected graph. * struct UndirectedGraphNode { * int label; * vector<UndirectedGraphNode *> neighbors; * UndirectedGraphNode(int x) : label(x) {}; * }; */ class Solution { public: UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { if(node == NULL) return NULL; // map from origin node to copy node unordered_map<UndirectedGraphNode *, UndirectedGraphNode *> m; unordered_map<UndirectedGraphNode *, bool> visited; queue<UndirectedGraphNode*> q; q.push(node); while(!q.empty()) {// BFS UndirectedGraphNode* front = q.front(); q.pop(); if(visited[front] == false) { visited[front] = true; UndirectedGraphNode* cur; if(m.find(front) == m.end()) { cur = new UndirectedGraphNode(front->label); m[front] = cur; } else { cur = m[front]; } for(int i = 0; i < front->neighbors.size(); i ++) { if(m.find(front->neighbors[i]) == m.end()) { UndirectedGraphNode* nei = new UndirectedGraphNode(front->neighbors[i]->label); m[front->neighbors[i]] = nei; cur->neighbors.push_back(nei); q.push(front->neighbors[i]); } else { cur->neighbors.push_back(m[front->neighbors[i]]); } } } } return m[node]; } };
解法二:递归深度优先遍历(DFS)
/** * Definition for undirected graph. * struct UndirectedGraphNode { * int label; * vector<UndirectedGraphNode *> neighbors; * UndirectedGraphNode(int x) : label(x) {}; * }; */ class Solution { public: map<UndirectedGraphNode *, UndirectedGraphNode *> m; UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { if(node == NULL) return NULL; if(m.find(node) != m.end()) //if node is visited, just return the recorded nodeClone return m[node]; UndirectedGraphNode *nodeClone = new UndirectedGraphNode(node->label); m[node] = nodeClone; for(int st = 0; st < node->neighbors.size(); st ++) { UndirectedGraphNode *temp = cloneGraph(node->neighbors[st]); if(temp != NULL) nodeClone->neighbors.push_back(temp); } return nodeClone; } };
解法三:非递归深度优先遍历(DFS)
深度优先遍历需要进行邻居计数。如果邻居已经全部访问,则该节点访问完成,可以出栈,否则就要继续处理下一个邻居。
/** * Definition for undirected graph. * struct UndirectedGraphNode { * int label; * vector<UndirectedGraphNode *> neighbors; * UndirectedGraphNode(int x) : label(x) {}; * }; */ struct Node { UndirectedGraphNode *node; int ind; //next neighbor to visit Node(UndirectedGraphNode *n, int i): node(n), ind(i) {} }; class Solution { public: UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { if(node == NULL) return NULL; // map from origin node to copy node unordered_map<UndirectedGraphNode *, UndirectedGraphNode *> m; unordered_map<UndirectedGraphNode *, bool> visited; stack<Node*> stk; Node* newnode = new Node(node, 0); stk.push(newnode); visited[newnode->node] = true; while(!stk.empty()) {// DFS Node* top = stk.top(); UndirectedGraphNode* topCopy; if(m.find(top->node) == m.end()) { topCopy = new UndirectedGraphNode(top->node->label); m[top->node] = topCopy; } else topCopy = m[top->node]; if(top->ind == top->node->neighbors.size()) //finished copying its neighbors stk.pop(); else { while(top->ind < top->node->neighbors.size()) { if(m.find(top->node->neighbors[top->ind]) == m.end()) { UndirectedGraphNode* neiCopy = new UndirectedGraphNode(top->node->neighbors[top->ind]->label); m[top->node->neighbors[top->ind]] = neiCopy; topCopy->neighbors.push_back(neiCopy); if(visited[top->node->neighbors[top->ind]] == false) { visited[top->node->neighbors[top->ind]] = true; Node* topnei = new Node(top->node->neighbors[top->ind], 0); stk.push(topnei); } top->ind ++; break; } else { topCopy->neighbors.push_back(m[top->node->neighbors[top->ind]]); top->ind ++; } } } } return m[node]; } };