zoukankan      html  css  js  c++  java
  • 【LeetCode】94. Binary Tree Inorder Traversal (3 solutions)

    Binary Tree Inorder Traversal

    Given a binary tree, return the inorder traversal of its nodes' values.

    For example:
    Given binary tree {1,#,2,3},

       1
        
         2
        /
       3
    

    return [1,3,2].

    Note: Recursive solution is trivial, could you do it iteratively?

    解法一:递归

    /**
     * Definition for binary tree
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<int> inorderTraversal(TreeNode *root) {
            vector<int> ret;
            if(!root)
                return ret;
            inorder(root, ret);
            return ret;
        }
        void inorder(TreeNode* root, vector<int>& ret)
        {
            if(root->left)
                inorder(root->left, ret);
            ret.push_back(root->val);
            if(root->right)
                inorder(root->right, ret);
        }
    };

    解法二:非递归

    使用map记录是否访问过,使用栈记录访问路径,访问过就出栈。

    遵循左根右原则。

    /**
     * Definition for binary tree
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<int> inorderTraversal(TreeNode *root) {
            vector<int> ret;
            if(!root)
                return ret;
                
            stack<TreeNode*> stk;
            unordered_map<TreeNode*, bool> m;
            stk.push(root);
            m[root] = true;
            while(!stk.empty())
            {
                TreeNode* top = stk.top();
                if(top->left)
                {
                    if(m[top->left] == false)
                    {
                        stk.push(top->left);
                        m[top->left] = true;
                        continue;
                    }
                }
                ret.push_back(top->val);
                stk.pop();
                if(top->right)
                {
                    if(m[top->right] == false)
                    {
                        stk.push(top->right);
                        m[top->right] = true;
                    }
                }
            }
            return ret;
        }
    };

    解法三:非递归,不需要除栈之外的空间

    每次新加入节点时,将左子节点(比当前节点小)全部进栈,这样在出栈的时候就不需要再去访问左子节点,

    只需要访问右子节点(比当前节点大)

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<int> inorderTraversal(TreeNode* root) {
            vector<int> ret;
            if(root == NULL)
                return ret;
            stack<TreeNode*> stk;
            stk.push(root);
            TreeNode* cur = root;
            while(cur->left)
            {
                stk.push(cur->left);
                cur = cur->left;
            }
            while(!stk.empty())
            {
                TreeNode* top = stk.top();
                stk.pop();
                ret.push_back(top->val);
                if(top->right)
                {
                    TreeNode* cur = top->right;
                    stk.push(cur);
                    while(cur->left)
                    {
                        stk.push(cur->left);
                        cur = cur->left;
                    }
                }
            }
            return ret;
        }
    };

  • 相关阅读:
    Day10
    Day9
    Day8
    Day 7
    Day-6
    java中的原子性
    java 原子性
    内存可见性
    JVM 常忘笔记
    JVM 解释执行 编译执行 JIT
  • 原文地址:https://www.cnblogs.com/ganganloveu/p/4138488.html
Copyright © 2011-2022 走看看