zoukankan      html  css  js  c++  java
  • 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder

    习题的链接:Exercise:Sparse Autoencoder

    注意点:

    1、训练样本像素值需要归一化。

    因为输出层的激活函数是logistic函数,值域(0,1),

    如果训练样本每个像素点没有进行归一化,那将无法进行自编码。

    2、训练阶段,向量化实现比for循环实现快十倍。

    3、最后产生的图片阵列是将W1权值矩阵的转置,每一列作为一张图片。

    第i列其实就是最大可能激活第i个隐藏节点的图片xi,再乘以常数因子C(其中C就是W1第i行元素的平方和)。

    证明可见:Visualizing a Trained Autoencoder

    我的实现:

    sampleIMAGES.m

    function patches = sampleIMAGES()
    % sampleIMAGES
    % Returns 10000 patches for training
    
    load IMAGES;    % load images from disk 
    
    patchsize = 8;  % we'll use 8x8 patches 
    numpatches = 10000;
    
    % Initialize patches with zeros.  Your code will fill in this matrix--one
    % column per patch, 10000 columns. 
    patches = zeros(patchsize*patchsize, numpatches);
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Fill in the variable called "patches" using data 
    %  from IMAGES.  
    %  
    %  IMAGES is a 3D array containing 10 images
    %  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,
    %  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize
    %  it. (The contrast on these images look a bit off because they have
    %  been preprocessed using using "whitening."  See the lecture notes for
    %  more details.) As a second example, IMAGES(21:30,21:30,1) is an image
    %  patch corresponding to the pixels in the block (21,21) to (30,30) of
    %  Image 1
    
    for i=1:numpatches
    % generate random row&col number [1, 512-patchsize+1=505]
    % generate random IMAGES id [1, 10]
        row = round(1 + rand(1,1)*504);
        col = round(1 + rand(1,1)*504);
        pid = round(1 + rand(1,1)*9);
        patches(:, i) = reshape(IMAGES(row:row+7, col:col+7, pid), patchsize*patchsize, 1);
    end
    
    %% ---------------------------------------------------------------
    % For the autoencoder to work well we need to normalize the data
    % Specifically, since the output of the network is bounded between [0,1]
    % (due to the sigmoid activation function), we have to make sure 
    % the range of pixel values is also bounded between [0,1]
    patches = normalizeData(patches);
    
    end
    
    
    %% ---------------------------------------------------------------
    function patches = normalizeData(patches)
    
    % Squash data to [0.1, 0.9] since we use sigmoid as the activation
    % function in the output layer
    
    % Remove DC (mean of images). 
    patches = bsxfun(@minus, patches, mean(patches));
    
    % Truncate to +/-3 standard deviations and scale to -1 to 1
    pstd = 3 * std(patches(:));
    patches = max(min(patches, pstd), -pstd) / pstd;
    
    % Rescale from [-1,1] to [0.1,0.9]
    patches = (patches + 1) * 0.4 + 0.1;
    
    end

    computeNumericalGradient.m

    function numgrad = computeNumericalGradient(J, theta)
    % numgrad = computeNumericalGradient(J, theta)
    % theta: a vector of parameters (column vector)
    % J: a function that outputs a real-number. Calling y = J(theta) will return the
    % function value at theta. 
      
    % Initialize numgrad with zeros
    numgrad = zeros(size(theta));
    
    %% ---------- YOUR CODE HERE --------------------------------------
    % Instructions: 
    % Implement numerical gradient checking, and return the result in numgrad.  
    % (See Section 2.3 of the lecture notes.)
    % You should write code so that numgrad(i) is (the numerical approximation to) the 
    % partial derivative of J with respect to the i-th input argument, evaluated at theta.  
    % I.e., numgrad(i) should be the (approximately) the partial derivative of J with 
    % respect to theta(i).
    %                
    % Hint: You will probably want to compute the elements of numgrad one at a time. 
    
    N = size(theta, 1);
    EPSILON = 1e-4;
    Identity = eye(N);
    
    for i = 1:N
        numgrad(i,:) = (J(theta + EPSILON * Identity(:, i)) - J(theta - EPSILON * Identity(:, i))) / (2 * EPSILON);
    end
    
    %% ---------------------------------------------------------------
    end

    sparseAutoencoderCost.m

    function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
                                                 lambda, sparsityParam, beta, data)
    
    % visibleSize: the number of input units (probably 64) 
    % hiddenSize: the number of hidden units (probably 25) 
    % lambda: weight decay parameter
    % sparsityParam: The desired average activation for the hidden units (denoted in the lecture
    %                           notes by the greek alphabet rho, which looks like a lower-case "p").
    % beta: weight of sparsity penalty term
    % data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 
      
    % The input theta is a vector (because minFunc expects the parameters to be a vector). 
    % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
    % follows the notation convention of the lecture notes. 
    
    % W1 is a hiddenSize * visibleSize matrix
    W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    % W2 is a visibleSize * hiddenSize matrix
    W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
    % b1 is a hiddenSize * 1 vector
    b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    % b2 is a visible * 1 vector
    b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
    
    % Cost and gradient variables (your code needs to compute these values). 
    % Here, we initialize them to zeros. 
    cost = 0;
    W1grad = zeros(size(W1)); 
    W2grad = zeros(size(W2));
    b1grad = zeros(size(b1)); 
    b2grad = zeros(size(b2));
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
    %                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.
    %
    % W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.
    % Note that W1grad has the same dimensions as W1, b1grad has the same dimensions
    % as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with
    % respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) 
    % with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term 
    % [(1/m) Delta W^{(1)} + lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 
    % of the lecture notes (and similarly for W2grad, b1grad, b2grad).
    % 
    % Stated differently, if we were using batch gradient descent to optimize the parameters,
    % the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. 
    % 
    
    numCases = size(data, 2);
    
    % forward propagation
    z2 = W1 * data + repmat(b1, 1, numCases);
    a2 = sigmoid(z2);
    z3 = W2 * a2 + repmat(b2, 1, numCases);
    a3 = sigmoid(z3);
    
    % error
    sqrerror = (data - a3) .* (data - a3);
    error = sum(sum(sqrerror)) / (2 * numCases);
    % weight decay
    wtdecay = (sum(sum(W1 .* W1)) + sum(sum(W2 .* W2))) / 2;
    % sparsity
    rho = sum(a2, 2) ./ numCases;
    divergence = sparsityParam .* log(sparsityParam ./ rho) + (1 - sparsityParam) .* log((1 - sparsityParam) ./ (1 - rho));
    sparsity = sum(divergence);
    
    cost = error + lambda * wtdecay + beta * sparsity;
    
    % delta3 is a visibleSize * numCases matrix
    delta3 = -(data - a3) .* sigmoiddiff(z3);
    % delta2 is a hiddenSize * numCases matrix
    sparsityterm = beta * (-sparsityParam ./ rho + (1-sparsityParam) ./ (1-rho));
    delta2 = (W2' * delta3 + repmat(sparsityterm, 1, numCases)) .* sigmoiddiff(z2);
    
    W1grad = delta2 * data' ./ numCases + lambda * W1;
    b1grad = sum(delta2, 2) ./ numCases;
    
    W2grad = delta3 * a2' ./ numCases + lambda * W2;
    b2grad = sum(delta3, 2) ./ numCases;
    
    %-------------------------------------------------------------------
    % After computing the cost and gradient, we will convert the gradients back
    % to a vector format (suitable for minFunc).  Specifically, we will unroll
    % your gradient matrices into a vector.
    
    grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
    
    end
    
    %-------------------------------------------------------------------
    % Here's an implementation of the sigmoid function, which you may find useful
    % in your computation of the costs and the gradients.  This inputs a (row or
    % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 
    
    function sigm = sigmoid(x)
      
        sigm = 1 ./ (1 + exp(-x));
    end
    
    function sigmdiff = sigmoiddiff(x)
    
        sigmdiff = sigmoid(x) .* (1 - sigmoid(x));
    end

    最终训练结果:

  • 相关阅读:
    godaddy掉包抽风实况记录
    多步 OLE DB 操作产生错误。如果可能,请检查每个 OLE DB 状态值。没有工作被完成
    Godaddy空间访问过慢 或是联通/网通运营商限制
    A4纸网页打印中对应像素的设定和换算
    lnmp下 nginx服务器 shopex 安装 出现502 Bad Gateway
    时代互联域名管理后台增加二级域名的方法
    简单的会员系统
    图文讲解如何在godaddy注册的域名如何修改DNS指向
    距离计算方法总结
    今天开始学模式识别与机器学习Pattern Recognition and Machine Learning 书,章节1.1,多项式曲线拟合(Polynomial Curve Fitting)
  • 原文地址:https://www.cnblogs.com/ganganloveu/p/4193928.html
Copyright © 2011-2022 走看看