zoukankan      html  css  js  c++  java
  • 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening

    习题链接:Exercise:PCA and Whitening

    pca_gen.m

    %%================================================================
    %% Step 0a: Load data
    %  Here we provide the code to load natural image data into x.
    %  x will be a 144 * 10000 matrix, where the kth column x(:, k) corresponds to
    %  the raw image data from the kth 12x12 image patch sampled.
    %  You do not need to change the code below.
    
    x = sampleIMAGESRAW();
    figure('name','Raw images');
    randsel = randi(size(x,2),200,1); % A random selection of samples for visualization
    display_network(x(:,randsel));
    
    %%================================================================
    %% Step 0b: Zero-mean the data (by row)
    %  You can make use of the mean and repmat/bsxfun functions.
    
    % -------------------- YOUR CODE HERE -------------------- 
    x = x-repmat(mean(x,1),size(x,1),1);
    
    %%================================================================
    %% Step 1a: Implement PCA to obtain xRot
    %  Implement PCA to obtain xRot, the matrix in which the data is expressed
    %  with respect to the eigenbasis of sigma, which is the matrix U.
    
    
    % -------------------- YOUR CODE HERE -------------------- 
    %xRot = zeros(size(x)); % You need to compute this
    sigma = x*x' ./ size(x,2);
    [u,s,v] = svd(sigma);
    xRot = u' * x;
    
    %%================================================================
    %% Step 1b: Check your implementation of PCA
    %  The covariance matrix for the data expressed with respect to the basis U
    %  should be a diagonal matrix with non-zero entries only along the main
    %  diagonal. We will verify this here.
    %  Write code to compute the covariance matrix, covar. 
    %  When visualised as an image, you should see a straight line across the
    %  diagonal (non-zero entries) against a blue background (zero entries).
    
    % -------------------- YOUR CODE HERE -------------------- 
    %covar = zeros(size(x, 1)); % You need to compute this
    covar = xRot*xRot' ./ size(x,2);
    
    % Visualise the covariance matrix. You should see a line across the
    % diagonal against a blue background.
    figure('name','Visualisation of covariance matrix');
    imagesc(covar);
    
    %%================================================================
    %% Step 2: Find k, the number of components to retain
    %  Write code to determine k, the number of components to retain in order
    %  to retain at least 99% of the variance.
    
    % -------------------- YOUR CODE HERE -------------------- 
    %k = 0; % Set k accordingly
    eigenvalue = diag(covar);
    total = sum(eigenvalue);
    tmpSum = 0;
    for k=1:size(x,1)
        tmpSum = tmpSum+eigenvalue(k);
        if(tmpSum / total >= 0.9)
            break;
        end
    end
    %%================================================================
    %% Step 3: Implement PCA with dimension reduction
    %  Now that you have found k, you can reduce the dimension of the data by
    %  discarding the remaining dimensions. In this way, you can represent the
    %  data in k dimensions instead of the original 144, which will save you
    %  computational time when running learning algorithms on the reduced
    %  representation.
    % 
    %  Following the dimension reduction, invert the PCA transformation to produce 
    %  the matrix xHat, the dimension-reduced data with respect to the original basis.
    %  Visualise the data and compare it to the raw data. You will observe that
    %  there is little loss due to throwing away the principal components that
    %  correspond to dimensions with low variation.
    
    % -------------------- YOUR CODE HERE -------------------- 
    %xHat = zeros(size(x));  % You need to compute this
    xRot(k+1:size(x,1), :) = 0;
    xHat = u * xRot;
    
    % Visualise the data, and compare it to the raw data
    % You should observe that the raw and processed data are of comparable quality.
    % For comparison, you may wish to generate a PCA reduced image which
    % retains only 90% of the variance.
    
    figure('name',['PCA processed images ',sprintf('(%d / %d dimensions)', k, size(x, 1)),'']);
    display_network(xHat(:,randsel));
    figure('name','Raw images');
    display_network(x(:,randsel));
    
    %%================================================================
    %% Step 4a: Implement PCA with whitening and regularisation
    %  Implement PCA with whitening and regularisation to produce the matrix
    %  xPCAWhite. 
    
    %epsilon = 0;
    epsilon = 0.1;
    %xPCAWhite = zeros(size(x));
    
    % -------------------- YOUR CODE HERE -------------------- 
    xPCAWhite = diag(1 ./ sqrt(diag(s)+epsilon)) * u' * x;
    
    %%================================================================
    %% Step 4b: Check your implementation of PCA whitening 
    %  Check your implementation of PCA whitening with and without regularisation. 
    %  PCA whitening without regularisation results a covariance matrix 
    %  that is equal to the identity matrix. PCA whitening with regularisation
    %  results in a covariance matrix with diagonal entries starting close to 
    %  1 and gradually becoming smaller. We will verify these properties here.
    %  Write code to compute the covariance matrix, covar. 
    %
    %  Without regularisation (set epsilon to 0 or close to 0), 
    %  when visualised as an image, you should see a red line across the
    %  diagonal (one entries) against a blue background (zero entries).
    %  With regularisation, you should see a red line that slowly turns
    %  blue across the diagonal, corresponding to the one entries slowly
    %  becoming smaller.
    
    % -------------------- YOUR CODE HERE -------------------- 
    covar = xPCAWhite * xPCAWhite' ./ size(x,2);
    
    % Visualise the covariance matrix. You should see a red line across the
    % diagonal against a blue background.
    figure('name','Visualisation of covariance matrix');
    imagesc(covar);
    
    %%================================================================
    %% Step 5: Implement ZCA whitening
    %  Now implement ZCA whitening to produce the matrix xZCAWhite. 
    %  Visualise the data and compare it to the raw data. You should observe
    %  that whitening results in, among other things, enhanced edges.
    
    %xZCAWhite = zeros(size(x));
    xZCAWhite = u * xPCAWhite;
    
    % -------------------- YOUR CODE HERE -------------------- 
    
    % Visualise the data, and compare it to the raw data.
    % You should observe that the whitened images have enhanced edges.
    figure('name','ZCA whitened images');
    display_network(xZCAWhite(:,randsel));
    figure('name','Raw images');
    display_network(x(:,randsel));
  • 相关阅读:
    LeetCode. 476. Number Complement
    LeetCode 172.Factorial Trailing Zeroes
    原码,反码,补码笔记
    python3笔记
    django笔记(python web框架)
    mysql 8.0 主从复制配置
    centos 7系统安装mysql 8.0
    MobaXterm无法退格删除
    Oracle数据泵常用命令
    oracle查年度周末日期
  • 原文地址:https://www.cnblogs.com/ganganloveu/p/4202474.html
Copyright © 2011-2022 走看看