zoukankan      html  css  js  c++  java
  • 【LeetCode】338. Counting Bits (2 solutions)

    Counting Bits

    Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

    Example:
    For num = 5 you should return [0,1,1,2,1,2].

    Follow up:

    • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
    • Space complexity should be O(n).
    • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

    Show Hint 

      Credits:
      Special thanks to @ syedee for adding this problem and creating all test cases.

      解法一:

      按照定义做,注意,x&(x-1)可以消去最右边的1

      class Solution {
      public:
          vector<int> countBits(int num) {
              vector<int> ret;
              for(int i = 0; i <= num; i ++)
                  ret.push_back(countbit(i));
              return ret;
          }
          int countbit(int i)
          {
              int count = 0;
              while(i)
              {
                  i &= (i-1);
                  count ++;
              }
              return count;
          }
      };

      解法二:

      对于[2^k, 2^(k+1)-1]区间,可以划分成前后两部分

      前半部分与[2^(k-1), 2^k-1]内的值相同,后半部分与[2^(k-1), 2^k-1]内值+1相同。

      class Solution {
      public:
          vector<int> countBits(int num) {
              vector<int> ret;
              
              ret.push_back(0);
              if(num == 0)
              // start case 1
                  return ret;
              ret.push_back(1);
              
              if(num == 1)
              // start case 2
                  return ret;
      
              // general case
              else
              {
                  int k = 0;
                  int result = 1;
                  while(result-1 < num)
                  {
                      result *= 2;
                      k ++;
                  }
                  // to here, num∈ [2^(k-1),2^k-1]
                  int gap = pow(2.0, k) - 1 - num;
                  for(int i = 0; i < k-2; i ++)
                  {// infer from [2^i, 2^(i+1)-1] to [2^(i+1), 2^(i+2)-1]
                      // copy part
                      for(int j = pow(2.0, i); j <= pow(2.0, i+1)-1; j ++)
                          ret.push_back(ret[j]);
                      // plus 1 part
                      for(int j = pow(2.0, i); j <= pow(2.0, i+1)-1; j ++)
                          ret.push_back(ret[j]+1);
                  }
                  for(int i = 0; i < pow(2.0, k-1) - gap; i ++)
                  {
                      int j = pow(2.0, k-2) + i;
                      if(i < pow(2.0, k-2))
                      // copy part
                          ret.push_back(ret[j]);
                      else
                      // plus 1 part
                          ret.push_back(ret[j]+1);
                  }
              }
              return ret;
          }
      };

       
    1. 相关阅读:
      预分区
      Flume学习笔记
      1
      在视图中使用时间
      Java 正则表达式的使用
      Reactor模式(反应器模式)
      Control character in cookie value, consider BASE64 encoding your value , java操作cookie遇到中文会报错的解决方案
      关于这周工作中遇到的关于缓存问题的记录
      eclipse import的项目报autowired cannot be resolved to a type的错误
      m2e插件的新下载地址
    2. 原文地址:https://www.cnblogs.com/ganganloveu/p/5316869.html
    Copyright © 2011-2022 走看看