zoukankan      html  css  js  c++  java
  • 高斯混合模型以及EM算法

    高斯混合模型

    高斯混合模型(GMM),顾名思义,就是数据可以看作是从数个高斯分布中生成出来的。虽然我们可以用不同的分布来随意地构造 XX Mixture Model ,但是 GMM是 最为流行。另外,Mixture Model 本身其实也是可以变得任意复杂的,通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布。

    每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

    $$ p(x) = sumlimits_{k = 1}^K p(k)p(x|k) = sumlimits_{k = 1}^K pi _kmathcal{N}(x|mu_k,Sigma_k) ag {1} $$

    假设现在有N数据点,我们认为这些数据点由某个GMM模型产生,现在我们要需要确定 这些参数。很自然的,我们想到利用最大似然估计来确定这些参数,GMM的似然函数如下:
    $$ log prod limits_{i = 1}^Np(x_i) = sumlimits_{i = 1}^N log p(x_i)=sumlimits_{i = 1}^Nlogsumlimits_{k = 1}^K pi _kmathcal{N}(x_i|mu_k, Sigma_k) ag{2} $$

    参考文章:

  • 相关阅读:
    vue——项目技术储备
    Framework7—— 混合开发
    CSS——常见的问题
    Vue——常见问题
    Vue——使用 watch 注意项
    Node——微服务架构(二)
    C——基本词汇
    Go——空接口与断言
    Node——PM2
    Vue——组件异步加载与路由懒加载
  • 原文地址:https://www.cnblogs.com/gangzhuzi/p/8214306.html
Copyright © 2011-2022 走看看