zoukankan      html  css  js  c++  java
  • Kosaraju 算法查找强连通分支

    有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的。

    实际上,强连通分支 SCC 将有向图分割为多个内部强连通的子图。如下图中,整个图不是强连通的,但可以被分割成 3 个强连通分支。

    通过 Kosaraju 算法,可以在 O(V+E) 运行时间内找到所有的强连通分支。Kosaraju 算法是基于深度优先搜索(DFS),算法的描述如下:

    1. 创建一个空的栈 S,并做一次  DFS 遍历。在 DFS 遍历中,当在递归调用 DSF 访问邻接顶点时,将当前顶点压入栈中;
    2. 置换图(Transpose Graph);
    3. 从栈 S 中逐个弹出顶点 v,以 v 为源点进行 DFS 遍历。从 v 开始的 DFS 遍历将输出 v 关联的强连通分支。

    例如,对于上面的图做第一次 DFS 遍历,然后反转图,则可理解为整个图中的边的方向均反转了。

    下面是 Kosaraju 算法的 C# 实现。

      1 using System;
      2 using System.Collections.Generic;
      3 using System.Linq;
      4 
      5 namespace GraphAlgorithmTesting
      6 {
      7   class Program
      8   {
      9     static void Main(string[] args)
     10     {
     11       Graph g = new Graph(5);
     12       g.AddEdge(1, 0, 11);
     13       g.AddEdge(0, 3, 13);
     14       g.AddEdge(2, 1, 10);
     15       g.AddEdge(3, 4, 12);
     16       g.AddEdge(0, 2, 4);
     17 
     18       Console.WriteLine();
     19       Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
     20       Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
     21       Console.WriteLine();
     22 
     23       List<List<int>> sccs = g.Kosaraju();
     24       foreach (var scc in sccs)
     25       {
     26         foreach (var vertex in scc)
     27         {
     28           Console.Write("{0} ", vertex);
     29         }
     30         Console.WriteLine();
     31       }
     32 
     33       Console.ReadKey();
     34     }
     35 
     36     class Edge
     37     {
     38       public Edge(int begin, int end, int weight)
     39       {
     40         this.Begin = begin;
     41         this.End = end;
     42         this.Weight = weight;
     43       }
     44 
     45       public int Begin { get; private set; }
     46       public int End { get; private set; }
     47       public int Weight { get; private set; }
     48 
     49       public override string ToString()
     50       {
     51         return string.Format(
     52           "Begin[{0}], End[{1}], Weight[{2}]",
     53           Begin, End, Weight);
     54       }
     55     }
     56 
     57     class Graph
     58     {
     59       private Dictionary<int, List<Edge>> _adjacentEdges
     60         = new Dictionary<int, List<Edge>>();
     61 
     62       public Graph(int vertexCount)
     63       {
     64         this.VertexCount = vertexCount;
     65       }
     66 
     67       public int VertexCount { get; private set; }
     68 
     69       public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } }
     70 
     71       public IEnumerable<Edge> Edges
     72       {
     73         get { return _adjacentEdges.Values.SelectMany(e => e); }
     74       }
     75 
     76       public int EdgeCount { get { return this.Edges.Count(); } }
     77 
     78       public void AddEdge(int begin, int end, int weight)
     79       {
     80         if (!_adjacentEdges.ContainsKey(begin))
     81         {
     82           var edges = new List<Edge>();
     83           _adjacentEdges.Add(begin, edges);
     84         }
     85 
     86         _adjacentEdges[begin].Add(new Edge(begin, end, weight));
     87       }
     88 
     89       public List<List<int>> Kosaraju()
     90       {
     91         Stack<int> stack = new Stack<int>();
     92 
     93         // Mark all the vertices as not visited (For first DFS)
     94         bool[] visited = new bool[VertexCount];
     95         for (int i = 0; i < visited.Length; i++)
     96           visited[i] = false;
     97 
     98         // Fill vertices in stack according to their finishing times
     99         for (int i = 0; i < visited.Length; i++)
    100           if (!visited[i])
    101             FillOrder(i, visited, stack);
    102 
    103         // Create a reversed graph
    104         Graph reversedGraph = Transpose();
    105 
    106         // Mark all the vertices as not visited (For second DFS)
    107         for (int i = 0; i < visited.Length; i++)
    108           visited[i] = false;
    109 
    110         List<List<int>> sccs = new List<List<int>>();
    111 
    112         // Now process all vertices in order defined by Stack
    113         while (stack.Count > 0)
    114         {
    115           // Pop a vertex from stack
    116           int v = stack.Pop();
    117 
    118           // Print Strongly connected component of the popped vertex
    119           if (!visited[v])
    120           {
    121             List<int> scc = new List<int>();
    122             reversedGraph.DFS(v, visited, scc);
    123             sccs.Add(scc);
    124           }
    125         }
    126 
    127         return sccs;
    128       }
    129 
    130       void DFS(int v, bool[] visited, List<int> scc)
    131       {
    132         visited[v] = true;
    133         scc.Add(v);
    134 
    135         if (_adjacentEdges.ContainsKey(v))
    136         {
    137           foreach (var edge in _adjacentEdges[v])
    138           {
    139             if (!visited[edge.End])
    140               DFS(edge.End, visited, scc);
    141           }
    142         }
    143       }
    144 
    145       void FillOrder(int v, bool[] visited, Stack<int> stack)
    146       {
    147         // Mark the current node as visited and print it
    148         visited[v] = true;
    149 
    150         // Recur for all the vertices adjacent to this vertex
    151         if (_adjacentEdges.ContainsKey(v))
    152         {
    153           foreach (var edge in _adjacentEdges[v])
    154           {
    155             if (!visited[edge.End])
    156               FillOrder(edge.End, visited, stack);
    157           }
    158         }
    159 
    160         // All vertices reachable from v are processed by now, 
    161         // push v to Stack
    162         stack.Push(v);
    163       }
    164 
    165       Graph Transpose()
    166       {
    167         Graph g = new Graph(this.VertexCount);
    168 
    169         foreach (var edge in this.Edges)
    170         {
    171           g.AddEdge(edge.End, edge.Begin, edge.Weight);
    172         }
    173 
    174         return g;
    175       }
    176     }
    177   }
    178 }

    输出结果如下:

    参考资料

    本篇文章《Kosaraju 算法查找强连通分支》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。

  • 相关阅读:
    Linux性能评测工具之一:gprof篇
    几个源码下载的网站
    linux svn代码回滚命令
    这就是阶层——你根本不知道世界有多残酷
    shell脚本中的数据传递方式
    XGBoost参数调优完全指南(附Python代码)
    机器学习(一) ---- 最优化理论基础
    Docker构建Java web应用服务
    使用Dockerfile创建支持SSH服务的镜像
    使用commit方式构建具有sshd服务的centos镜像
  • 原文地址:https://www.cnblogs.com/gaochundong/p/kosaraju_algorithm.html
Copyright © 2011-2022 走看看