zoukankan      html  css  js  c++  java
  • codeforces166E

    Tetrahedron

     CodeForces - 166E 

    You are given a tetrahedron. Let's mark its vertices with letters ABC and Dcorrespondingly.

    An ant is standing in the vertex D of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place.

    You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex D to itself in exactly n steps. In other words, you are asked to find out the number of different cyclic paths with the length of n from vertex D to itself. As the number can be quite large, you should print it modulo 1000000007 (109 + 7).

    Input

    The first line contains the only integer n (1 ≤ n ≤ 107) — the required length of the cyclic path.

    Output

    Print the only integer — the required number of ways modulo 1000000007 (109 + 7).

    Examples

    Input
    2
    Output
    3
    Input
    4
    Output
    21

    Note

    The required paths in the first sample are:

    • D - A - D
    • D - B - D
    • D - C - D

    sol:直接dp丝毫不慌,dp[i][0/1/2/3]表示第i步,当前位于节点j的方案数

    #include <bits/stdc++.h>
    using namespace std;
    typedef int ll;
    inline ll read()
    {
        ll s=0;
        bool f=0;
        char ch=' ';
        while(!isdigit(ch))
        {
            f|=(ch=='-'); ch=getchar();
        }
        while(isdigit(ch))
        {
            s=(s<<3)+(s<<1)+(ch^48); ch=getchar();
        }
        return (f)?(-s):(s);
    }
    #define R(x) x=read()
    inline void write(ll x)
    {
        if(x<0)
        {
            putchar('-'); x=-x;
        }
        if(x<10)
        {
            putchar(x+'0'); return;
        }
        write(x/10);
        putchar((x%10)+'0');
        return;
    }
    #define W(x) write(x),putchar(' ')
    #define Wl(x) write(x),putchar('
    ')
    const int N=100005;
    int n;
    int a[N],A[N],Len[N];
    int main()
    {
        int i,j,ans=1;
        R(n);
        if(n<=2) {Wl(n); return 0;}
        for(i=1;i<=n;i++)
        {
            R(a[i]);
        }
        *A=0;
        for(i=1;i<=n;i++)
        {
            if(a[i]>0)
            {
                A[++*A]=a[i];
                Len[*A]=1;
            }
            else
            {
                A[++*A]=0;
                for(;i<=n&&a[i]==0;i++) Len[*A]++;
                i--;
            }
        }
        for(i=1;i<=n;i++) ans=max(ans,Len[i]);
        if(*A==1) ans=n;
        if(*A==2)
        {
            if(A[1]==0) ans=max(Len[1],Len[2]+1);
            else ans=Len[2];
        }
        for(i=1;i<=(*A)-2;i++)
        {
            int tmp;
            if(A[i]==0)
            {
                tmp=Len[i+1]+1;
            }
            else if(A[i+1]==0)
            {
                if(Len[i+1]==1) tmp=Len[i+1]+1;
                else
                {
                    tmp=1+Len[i+2];
                    for(j=i+3;j<=*A;j++)
                    {
                        if(A[j]==A[j-1]+A[j-2]) tmp+=Len[j];
                        else break;
                    }
                    ans=max(ans,tmp);
                    continue;
                }
            }
            else tmp=Len[i]+Len[i+1];
            for(j=i+2;j<=*A;j++)
            {
                if(A[j]==A[j-1]+A[j-2]) tmp+=Len[j];
                else break;
            }
            ans=max(ans,tmp);
        }
        Wl(ans);
        return 0;
    }
    /*
    input
    10
    1 2 3 5 8 13 21 34 55 89
    output
    10
    
    input
    5
    1 1 1 1 1
    output
    2
    
    input
    10
    1 1 0 0 0 0 0 0 0 1
    output
    7
    */
    View Code
  • 相关阅读:
    新组件或功能怎么依附到已有的架构上
    高内聚、低耦合
    软件质量的定义
    软件架构与组件
    架构设计之拥抱着变化而设计(部分讲义分享)
    组件设计原则之概念篇(四)
    抽象类(接口类)的作用
    类,抽象基类,接口类三者间的区别与联系(C++)
    软件的可变性
    软件设计的复杂度
  • 原文地址:https://www.cnblogs.com/gaojunonly1/p/10617507.html
Copyright © 2011-2022 走看看