zoukankan      html  css  js  c++  java
  • codeforces387B

    George and Round

     CodeForces - 387B 

    George decided to prepare a Codesecrof round, so he has prepared m problems for the round. Let's number the problems with integers 1 through m. George estimates the i-th problem's complexity by integer bi.

    To make the round good, he needs to put at least n problems there. Besides, he needs to have at least one problem with complexity exactly a1, at least one with complexity exactly a2, ..., and at least one with complexity exactly an. Of course, the round can also have problems with other complexities.

    George has a poor imagination. It's easier for him to make some already prepared problem simpler than to come up with a new one and prepare it. George is magnificent at simplifying problems. He can simplify any already prepared problem with complexity c to any positive integer complexity d (c ≥ d), by changing limits on the input data.

    However, nothing is so simple. George understood that even if he simplifies some problems, he can run out of problems for a good round. That's why he decided to find out the minimum number of problems he needs to come up with in addition to the mhe's prepared in order to make a good round. Note that George can come up with a new problem of any complexity.

    Input

    The first line contains two integers n and m (1 ≤ n, m ≤ 3000) — the minimal number of problems in a good round and the number of problems George's prepared. The second line contains space-separated integers a1, a2, ..., an (1 ≤ a1 < a2 < ... < an ≤ 106) — the requirements for the complexity of the problems in a good round. The third line contains space-separated integers b1, b2, ..., bm (1 ≤ b1 ≤ b2... ≤ bm ≤ 106) — the complexities of the problems prepared by George.

    Output

    Print a single integer — the answer to the problem.

    Examples

    Input
    3 5
    1 2 3
    1 2 2 3 3
    Output
    0
    Input
    3 5
    1 2 3
    1 1 1 1 1
    Output
    2
    Input
    3 1
    2 3 4
    1
    Output
    3

    Note

    In the first sample the set of the prepared problems meets the requirements for a good round.

    In the second sample, it is enough to come up with and prepare two problems with complexities 2 and 3 to get a good round.

    In the third sample it is very easy to get a good round if come up with and prepare extra problems with complexities: 2, 3, 4.

    sol:注意到n很小,n2都可以过,于是直接暴力模拟。

    我猜应该有O(n*logn)的做法,比方说开一个multiset,先排遍序,每次取大于等于当前这个数的第一个,然后弹掉(这只是嘴巴,我没写过)

    #include <bits/stdc++.h>
    using namespace std;
    typedef int ll;
    inline ll read()
    {
        ll s=0;
        bool f=0;
        char ch=' ';
        while(!isdigit(ch))
        {
            f|=(ch=='-'); ch=getchar();
        }
        while(isdigit(ch))
        {
            s=(s<<3)+(s<<1)+(ch^48); ch=getchar();
        }
        return (f)?(-s):(s);
    }
    #define R(x) x=read()
    inline void write(ll x)
    {
        if(x<0)
        {
            putchar('-'); x=-x;
        }
        if(x<10)
        {
            putchar(x+'0');    return;
        }
        write(x/10);
        putchar((x%10)+'0');
        return;
    }
    #define W(x) write(x),putchar(' ')
    #define Wl(x) write(x),putchar('
    ')
    const int N=3005;
    int n,m,a[N],b[N];
    bool Bo[N];
    int main()
    {
        int i,j,ans;
        R(n); R(m);
        ans=n;
        for(i=1;i<=n;i++) R(a[i]);
        for(i=1;i<=m;i++) R(b[i]);
        sort(b+1,b+m+1);
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++) if(b[j]>=a[i]&&(!Bo[j]))
            {
                Bo[j]=1; ans--; break;
            }
        }
        Wl(ans);
        return 0;
    }
    View Code
  • 相关阅读:
    大数据应用案例之医疗行业
    优先数调度:按最高优先级算法
    实验二:先来先服务进程调度
    实验一:熟练使用DOS操作命令实验
    考试管理搭建帮助文档
    介绍配置管理工具SVN的使用
    在VMware安装Windows server 2003操作系统帮助文档
    搭建一个考试管理系统
    WinMail邮件服务器(客户端)环境搭建与配置
    搭建OA项目环境及卸载指南
  • 原文地址:https://www.cnblogs.com/gaojunonly1/p/10629378.html
Copyright © 2011-2022 走看看