Case of Fugitive
Andrewid the Android is a galaxy-famous detective. He is now chasing a criminal hiding on the planet Oxa-5, the planet almost fully covered with water.
The only dry land there is an archipelago of n narrow islands located in a row. For more comfort let's represent them as non-intersecting segments on a straight line: island i has coordinates [li, ri], besides, ri < li + 1 for 1 ≤ i ≤ n - 1.
To reach the goal, Andrewid needs to place a bridge between each pair of adjacentislands. A bridge of length a can be placed between the i-th and the (i + 1)-th islads, if there are such coordinates of x and y, that li ≤ x ≤ ri, li + 1 ≤ y ≤ ri + 1and y - x = a.
The detective was supplied with m bridges, each bridge can be used at most once. Help him determine whether the bridges he got are enough to connect each pair of adjacent islands.
Input
The first line contains integers n (2 ≤ n ≤ 2·105) and m (1 ≤ m ≤ 2·105) — the number of islands and bridges.
Next n lines each contain two integers li and ri (1 ≤ li ≤ ri ≤ 1018) — the coordinates of the island endpoints.
The last line contains m integer numbers a1, a2, ..., am (1 ≤ ai ≤ 1018) — the lengths of the bridges that Andrewid got.
Output
If it is impossible to place a bridge between each pair of adjacent islands in the required manner, print on a single line "No" (without the quotes), otherwise print in the first line "Yes" (without the quotes), and in the second line print n - 1numbers b1, b2, ..., bn - 1, which mean that between islands i and i + 1 there must be used a bridge number bi.
If there are multiple correct answers, print any of them. Note that in this problem it is necessary to print "Yes" and "No" in correct case.
Examples
4 4
1 4
7 8
9 10
12 14
4 5 3 8
Yes
2 3 1
2 2
11 14
17 18
2 9
No
2 1
1 1
1000000000000000000 1000000000000000000
999999999999999999
Yes
1
Note
In the first sample test you can, for example, place the second bridge between points 3 and 8, place the third bridge between points 7 and 10 and place the first bridge between points 10 and 14.
In the second sample test the first bridge is too short and the second bridge is too long, so the solution doesn't exist.
sol:把桥按照长度从小到大排序,对于每两座岛之间的桥长是一个闭区间[L,R]
对于桥一个个枚举过去,如当前桥长是a,对于所有L<=a的找到R最小的那个,贪心一遍即可
#include <bits/stdc++.h> using namespace std; typedef long long ll; inline ll read() { ll s=0; bool f=0; char ch=' '; while(!isdigit(ch)) { f|=(ch=='-'); ch=getchar(); } while(isdigit(ch)) { s=(s<<3)+(s<<1)+(ch^48); ch=getchar(); } return (f)?(-s):(s); } #define R(x) x=read() inline void write(ll x) { if(x<0) { putchar('-'); x=-x; } if(x<10) { putchar(x+'0'); return; } write(x/10); putchar((x%10)+'0'); return; } #define W(x) write(x),putchar(' ') #define Wl(x) write(x),putchar(' ') const int N=200005; int n,m; ll Daol[N],Daor[N]; struct Juli { ll Down,Up,Id; inline bool operator<(const Juli &tmp)const { return Up>tmp.Up; } }Dis[N]; inline bool cmp_Juli(Juli p,Juli q) { return p.Down<q.Down; } priority_queue<Juli>heap; struct Brg { ll Len; int Id; inline bool operator<(const Brg &tmp)const { return Len<tmp.Len; } }a[N]; int Ans[N]; int main() { int i; R(n); R(m); for(i=1;i<=n;i++) { R(Daol[i]); R(Daor[i]); if(i>1) Dis[i-1]=(Juli){Daol[i]-Daor[i-1],Daor[i]-Daol[i-1],i-1}; } sort(Dis+1,Dis+n,cmp_Juli); for(i=1;i<=m;i++) a[i]=(Brg){read(),i}; sort(a+1,a+m+1); int Now=1,cnt=0; // for(i=1;i<n;i++) printf("%d %d ",Dis[i].Down,Dis[i].Up); // puts("--------------------------"); for(i=1;i<=m;i++) { while(Now<n&&a[i].Len>=Dis[Now].Down&&a[i].Len<=Dis[Now].Up) heap.push(Dis[Now++]); if(heap.empty()) continue; Juli tmp=heap.top(); heap.pop(); // printf("%d %d %d ",tmp.Down,tmp.Up,a[i].Len); if(tmp.Up<a[i].Len) return puts("No"),0; cnt++; Ans[tmp.Id]=a[i].Id; } if(cnt<n-1) return puts("No"),0; puts("Yes"); for(i=1;i<n;i++) W(Ans[i]); puts(""); return 0; } /* Input 4 4 1 4 7 8 9 10 12 14 4 5 3 8 Output Yes 2 3 1 Input 2 2 11 14 17 18 2 9 Output No Input 2 1 1 1 1000000000000000000 1000000000000000000 999999999999999999 Output Yes 1 Input 6 9 1 4 10 18 23 29 33 43 46 57 59 77 11 32 32 19 20 17 32 24 32 Output Yes 1 6 4 5 8 */