zoukankan      html  css  js  c++  java
  • codeforces723E

    One-Way Reform

     CodeForces - 723E 

    There are n cities and m two-way roads in Berland, each road connects two cities. It is known that there is no more than one road connecting each pair of cities, and there is no road which connects the city with itself. It is possible that there is no way to get from one city to some other city using only these roads.

    The road minister decided to make a reform in Berland and to orient all roads in the country, i.e. to make each road one-way. The minister wants to maximize the number of cities, for which the number of roads that begins in the city equals to the number of roads that ends in it.

    Input

    The first line contains a positive integer t (1 ≤ t ≤ 200) — the number of testsets in the input.

    Each of the testsets is given in the following way. The first line contains two integers n and m (1 ≤ n ≤ 200, 0 ≤ m ≤ n·(n - 1) / 2) — the number of cities and the number of roads in Berland.

    The next m lines contain the description of roads in Berland. Each line contains two integers u and v (1 ≤ u, v ≤ n) — the cities the corresponding road connects. It's guaranteed that there are no self-loops and multiple roads. It is possible that there is no way along roads between a pair of cities.

    It is guaranteed that the total number of cities in all testset of input data doesn't exceed 200.

    Pay attention that for hacks, you can only use tests consisting of one testset, so tshould be equal to one.

    Output

    For each testset print the maximum number of such cities that the number of roads that begins in the city, is equal to the number of roads that ends in it.

    In the next m lines print oriented roads. First print the number of the city where the road begins and then the number of the city where the road ends. If there are several answers, print any of them. It is allowed to print roads in each test in arbitrary order. Each road should be printed exactly once.

    Example

    Input
    2
    5 5
    2 1
    4 5
    2 3
    1 3
    3 5
    7 2
    3 7
    4 2
    Output
    3
    1 3
    3 5
    5 4
    3 2
    2 1
    3
    2 4
    3 7

    sol:
    
    
    #include <bits/stdc++.h>
    using namespace std;
    typedef int ll;
    inline ll read()
    {
        ll s=0;
        bool f=0;
        char ch=' ';
        while(!isdigit(ch))
        {
            f|=(ch=='-'); ch=getchar();
        }
        while(isdigit(ch))
        {
            s=(s<<3)+(s<<1)+(ch^48); ch=getchar();
        }
        return (f)?(-s):(s);
    }
    #define R(x) x=read()
    inline void write(ll x)
    {
        if(x<0)
        {
            putchar('-'); x=-x;
        }
        if(x<10)
        {
            putchar(x+'0'); return;
        }
        write(x/10);
        putchar((x%10)+'0');
        return;
    }
    #define W(x) write(x),putchar(' ')
    #define Wl(x) write(x),putchar('
    ')
    const int N=205;
    int T,n,m,Deg[N],In[N],Out[N];
    set<int>E[N],Ans[N];
    bool Bo[N][N],Vis[N];
    inline void Link(int x,int y)
    {
        E[x].insert(y); Bo[x][y]=1; Deg[x]++;
    }
    inline void dfs(int x) 
    {
    //    cout<<"x="<<x<<endl;
        Vis[x]=1;
        set<int>::iterator it;
        for(it=E[x].begin();it!=E[x].end();it++)
        {
            int to=*it;
            if(!Bo[x][to]) continue;
            Bo[x][to]=Bo[to][x]=0;
            Ans[x].insert(to);
            dfs(to);
        }
    }
    int main()
    {
    //    freopen("data.in","r",stdin);
        int i;
        R(T);
        while(T--)
        {
            R(n); R(m);
            for(i=1;i<=n;E[i].clear(),Ans[i].clear(),Deg[i]=In[i]=Out[i]=Vis[i]=0,i++);
            for(i=1;i<=m;i++)
            {
                int x,y; R(x); R(y); Link(x,y); Link(y,x);
            }
            for(i=1;i<=n;i++) if(Deg[i]&1) Link(n+1,i),Link(i,n+1);
            for(i=1;i<=n;i++) if(!Vis[i]) dfs(i);
            set<int>::iterator it;
            for(i=1;i<=n;i++)
            {
                for(it=Ans[i].begin();it!=Ans[i].end();it++)
                {
                    if(*it!=n+1) In[*it]++,Out[i]++;
                }
            }
            int Sum=0;
            for(i=1;i<=n;i++) if(In[i]==Out[i]) Sum++;
            Wl(Sum);
            for(i=1;i<=n;i++)
            {
                for(it=Ans[i].begin();it!=Ans[i].end();it++) if(*it!=n+1)
                {
                    W(i); Wl(*it);
                }
            }
        }
        return 0;
    }
    /*
    Input
    2
    5 5
    2 1
    4 5
    2 3
    1 3
    3 5
    7 2
    3 7
    4 2
    Output
    3
    1 3
    3 5
    5 4
    3 2
    2 1
    3
    2 4
    3 7
    */
    View Code
    
    
    
     
  • 相关阅读:
    二十一.组合模式
    二十四.桥接模式
    二十六.职责链模式
    二十五.命令模式
    将小写转化成大写
    备份JOB SCHEDULE ENTRY的简单方法
    如何确定哪一个作业锁定QDLS下的一个目标
    WRKACTJOB命令一些有用功能介绍
    如何使用CA/400批处理的方式传输数据
    用前缀给字段命名
  • 原文地址:https://www.cnblogs.com/gaojunonly1/p/11188873.html
Copyright © 2011-2022 走看看