zoukankan      html  css  js  c++  java
  • Tensorflow 创建神经网络(二)可视化

    将训练过程可视化出来

    import tensorflow as tf 
    import numpy as np 
    import matplotlib.pyplot as plt 
    
    # 去掉警告
    import warnings
    warnings.filterwarnings("ignore",".*GUI is implemented.*")
    
    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    def add_layer(inputs, in_size, out_size, activation_function = None):
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) # 保证 biases 不为 0
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function == None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    x_data = np.linspace(-1, 1, 300) #(300,)
    x_data = x_data.reshape(300,1) # (300, 1)
    
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    # 为 batch 做准备
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    
    l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
    prediction = add_layer(l1, 10, 1, activation_function = None)
    
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), 1))
    
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    init = tf.global_variables_initializer()
    
    # 画图
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.scatter(x_data, y_data)
    plt.ion()
    
    with tf.Session() as sess:
        sess.run(init)
        for step in range(1000):
            sess.run(train_step, feed_dict = {xs: x_data, ys: y_data})
            if step % 20 == 0:
                #print('loss = ', sess.run(loss, feed_dict = {xs: x_data, ys: y_data}))     
    #            try:
    #                ax.lines.remove(lines[0])
    #            except Exception:
    #                pass
    
                prediction_value = sess.run(prediction, feed_dict = {xs:x_data})
    #            print(prediction_value)
                lines = ax.plot(x_data, prediction_value,'b-', lw = 3)
                
                plt.pause(0.1)
                ax.lines.remove(lines[0])
            step += 1
            plt.show()

    在训练过程中遇到的问题即解决办法:

    1、显示不出蓝线

    2、不能动态显示

    解决办法:

    1、在spyder中,将tools----preferences----IPython console----Graphics----Backend----改成Automatic,最后需要再对Spyder软件进行重新启动,没有重启则不能实现设置效果。这样就可以显示出单独的窗口,并可以实现动态的figure显示,

    2、step += 1,我刚开始运行的时候没有加这句,就会导致结果被剔除,就没有红线

     

    可以看出最后会越接近给出的数据

  • 相关阅读:
    JQuery Ajax 在asp.net中使用小结
    加班对你的提升有多大?
    .net学习笔记---HttpResponse类
    .net学习笔记----HttpRequest类
    MVC学习笔记---MVC生命周期
    MVC学习笔记---MVC生命周期及管道
    .net学习笔记---HttpHandle与HttpModule
    C#学习笔记---修饰符,this关键字和static关键字
    C#学习笔记---如何提高代码逼格
    Linq学习笔记---Linq to Sql之where
  • 原文地址:https://www.cnblogs.com/gaona666/p/12638705.html
Copyright © 2011-2022 走看看