zoukankan      html  css  js  c++  java
  • HDU 2586 How far away ?(LCA模板 近期公共祖先啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586



    Problem Description
    There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
     

    Input
    First line is a single integer T(T<=10), indicating the number of test cases.
      For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
      Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
     

    Output
    For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
     

    Sample Input
    2 3 2 1 2 10 3 1 15 1 2 2 3 2 2 1 2 100 1 2 2 1
     

    Sample Output
    10 25 100 100
     

    Source


    题意:

    一个村庄有 n 个房子和 n-1 条双向路,每两个房子之间都有一条简单路径。

    如今有m次询问。求两房子之间的距离。

    PS:

    能够用LCA来解,首先找到u, v 两点的lca,然后计算一下距离值就能够了。

    计算方法是。记下根结点到随意一点的距离dis[i],

    这样ans = dis[u] + dis[v] - 2 * dis[lca(v, v)]了。

    这题要用c++交。G++会爆栈!

    代码例如以下:看别人的模板(tarjan 离线)

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    #define maxn 40047
    #define maxm 247
    
    struct node
    {
        int to,w,next;
    } edge[maxn*2];
    
    int n, m;		//点数,询问次数
    int head[maxn];
    int k;
    int fa[maxn];		//父亲结点
    int dis[maxn];		//到根节点距离
    int vis[maxn];		//是否訪问过
    int s[maxm];		//询问起点
    int e[maxm];		//询问终点
    int lca[maxm];		//LCA(s,e) 近期公共祖先
    
    int find(int x)
    {
        if(fa[x]!=x) return fa[x]=find(fa[x]);
        return fa[x];
    }
    
    void init()
    {
        k = 1;
        memset(head,0,sizeof(head));
        memset(dis,0,sizeof(dis));
        memset(vis,0,sizeof(vis));
    }
    
    void add(int u,int v,int w)
    {
        edge[k].to = v;
        edge[k].w = w;
        edge[k].next = head[u];
        head[u] = k++;
    }
    
    void tarjan(int u)
    {
        int i,v;
        fa[u] = u;
        vis[u] = 1;
        for(i = 0; i < m; i++)
        {
            if(e[i]==u && vis[s[i]])
                lca[i] = find(s[i]);	//若询问的两点中有一点已被訪问过。则两点的LCA则为这一点的当前父节点
            if(s[i]==u && vis[e[i]])
                lca[i] = find(e[i]);
        }
        for(i = head[u]; i; i = edge[i].next)
        {
            v = edge[i].to;
            if(!vis[v]) //若没被訪问过
            {
                dis[v] = dis[u]+edge[i].w;//更新距离
                tarjan(v);
                fa[v] = u;//回溯更新父节点
            }
        }
    }
    
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            init();
            scanf("%d%d",&n,&m);
            int u, v, w;
            for(int i = 0; i < n-1; i++)
            {
                scanf("%d%d%d",&u,&v,&w);
                add(u,v,w);
                add(v,u,w);
            }
            for(int i = 0; i < m; i++)
            {
                scanf("%d%d",&s[i],&e[i]);
            }
            tarjan(1);
    
            for(int i = 0; i < m; i++)
            {
                printf("%d
    ",dis[s[i]]+dis[e[i]]-2*dis[lca[i]]);//两点距离为根节点到两点距离之和-根节点到LCA距离*2
            }
        }
        return 0;
    }
    

    (ST在线算法 转)

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    using namespace std;
    //#pragma comment(linker, "/STACK:102400000,102400000") //不须要申请系统栈
    const int N = 40010;
    const int M = 25;
    int dp[2*N][M];  //这个数组记得开到2*N,由于遍历后序列长度为2*n-1
    bool vis[N];
    struct edge
    {
        int u,v,w,next;
    } e[2*N];
    int tot,head[N];
    inline void add(int u ,int v ,int w ,int &k)
    {
        e[k].u = u;
        e[k].v = v;
        e[k].w = w;
        e[k].next = head[u];
        head[u] = k++;
        u = u^v;
        v = u^v;
        u = u^v;
        e[k].u = u;
        e[k].v = v;
        e[k].w = w;
        e[k].next = head[u];
        head[u] = k++;
    }
    int ver[2*N],R[2*N],first[N],dir[N];
    //ver:节点编号 R:深度 first:点编号位置 dir:距离
    void dfs(int u ,int dep)
    {
        vis[u] = true;
        ver[++tot] = u;
        first[u] = tot;
        R[tot] = dep;
        for(int k=head[u]; k!=-1; k=e[k].next)
            if( !vis[e[k].v] )
            {
                int v = e[k].v , w = e[k].w;
                dir[v] = dir[u] + w;
                dfs(v,dep+1);
                ver[++tot] = u;
                R[tot] = dep;
            }
    }
    void ST(int n)
    {
        for(int i=1; i<=n; i++)
            dp[i][0] = i;
        for(int j=1; (1<<j)<=n; j++)
        {
            for(int i=1; i+(1<<j)-1<=n; i++)
            {
                int a = dp[i][j-1] , b = dp[i+(1<<(j-1))][j-1];
                dp[i][j] = R[a]<R[b]?a:b;
            }
        }
    }
    //中间部分是交叉的。
    int RMQ(int l,int r)
    {
        int k=0;
        while((1<<(k+1))<=r-l+1)
            k++;
        int a = dp[l][k], b = dp[r-(1<<k)+1][k]; //保存的是编号
        return R[a]<R[b]?a:b;
    }
    
    int LCA(int u ,int v)
    {
        int x = first[u] , y = first[v];
        if(x > y) swap(x,y);
        int res = RMQ(x,y);
        return ver[res];
    }
    
    int main()
    {
        //freopen("Input.txt","r",stdin);
        //freopen("Out.txt","w",stdout);
        int cas;
        scanf("%d",&cas);
        while(cas--)
        {
            int n,q,num = 0;
            scanf("%d%d",&n,&q);
            memset(head,-1,sizeof(head));
            memset(vis,false,sizeof(vis));
            for(int i=1; i<n; i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                add(u,v,w,num);
            }
            tot = 0;
            dir[1] = 0;
            dfs(1,1);
            /*printf("节点ver "); for(int i=1; i<=2*n-1; i++) printf("%d ",ver[i]); cout << endl;
            printf("深度R "); for(int i=1; i<=2*n-1; i++) printf("%d ",R[i]);   cout << endl;
            printf("首位first "); for(int i=1; i<=n; i++) printf("%d ",first[i]);    cout << endl;
            printf("距离dir "); for(int i=1; i<=n; i++) printf("%d ",dir[i]);      cout << endl;*/
            ST(2*n-1);
            while(q--)
            {
                int u,v;
                scanf("%d%d",&u,&v);
                int lca = LCA(u,v);
                printf("%d
    ",dir[u] + dir[v] - 2*dir[lca]);
            }
        }
        return 0;
    }
    



  • 相关阅读:
    nodejs+mongoose操作mongodb副本集实例
    创建mongodb副本集操作实例
    SpringBoot(二)Web整合开发
    SpringBoot(一)走进Springboot的世界
    Git(二)Git几个区的关系与Git和GitHub的关联
    Git(一)之基本操作详解
    HttpClient(二)HttpClient使用Ip代理与处理连接超时
    HttpClient(一)HttpClient抓取网页基本信息
    Jsoup(一)Jsoup详解(官方)
    MongoDB(一)环境搭建与初始配置
  • 原文地址:https://www.cnblogs.com/gavanwanggw/p/6883920.html
Copyright © 2011-2022 走看看