zoukankan      html  css  js  c++  java
  • CF 558A(Lala Land and Apple Trees-暴力)

    A. Lala Land and Apple Trees
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere.

    Lala Land has exactly n apple trees. Tree number i is located in a position xi and has ai apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in x = 0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing.

    What is the maximum number of apples he can collect?

    Input

    The first line contains one number n (1 ≤ n ≤ 100), the number of apple trees in Lala Land.

    The following n lines contains two integers each xiai ( - 105 ≤ xi ≤ 105xi ≠ 01 ≤ ai ≤ 105), representing the position of the i-th tree and number of apples on it.

    It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0.

    Output

    Output the maximum number of apples Amr can collect.

    Sample test(s)
    input
    2
    -1 5
    1 5
    
    output
    10
    input
    3
    -2 2
    1 4
    -1 3
    
    output
    9
    input
    3
    1 9
    3 5
    7 10
    
    output
    9
    Note

    In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples.

    In the second sample test the optimal solution is to go left to x =  - 1, collect apples from there, then the direction will be reversed, Amr has to go to x = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree x =  - 2.

    In the third sample test the optimal solution is to go right to x = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.



    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<functional>
    #include<iostream>
    #include<cmath>
    #include<cctype>
    #include<ctime>
    using namespace std;
    #define For(i,n) for(int i=1;i<=n;i++)
    #define Fork(i,k,n) for(int i=k;i<=n;i++)
    #define Rep(i,n) for(int i=0;i<n;i++)
    #define ForD(i,n) for(int i=n;i;i--)
    #define RepD(i,n) for(int i=n;i>=0;i--)
    #define Forp(x) for(int p=pre[x];p;p=next[p])
    #define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
    #define Lson (x<<1)
    #define Rson ((x<<1)+1)
    #define MEM(a) memset(a,0,sizeof(a));
    #define MEMI(a) memset(a,127,sizeof(a));
    #define MEMi(a) memset(a,128,sizeof(a));
    #define INF (2139062143)
    #define F (100000007)
    #define MAXN (1000)
    typedef long long ll;
    ll mul(ll a,ll b){return (a*b)%F;}
    ll add(ll a,ll b){return (a+b)%F;}
    ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
    void upd(ll &a,ll b){a=(a%F+b%F)%F;}
    int n;
    pair<int,int> p[MAXN];
    int main()
    {
    //	freopen("A.in","r",stdin);
    //	freopen(".out","w",stdout);
    	
    	cin>>n;
    	For(i,n) scanf("%d%d",&p[i].first,&p[i].second);
    	
    	sort(p+1,p+1+n);
    	p[0]=p[n+1]=make_pair(-INF,-INF);
    	int p2=1;
    	while(p2<=n&&p[p2].first<0) ++p2;
    	
    	if (p2>n)
    	{
    		cout<<p[n].second<<endl;return 0;
    	}
    	
    	int s1,s2;
    	int len=min(s1=p2-1,s2=n-p2+1);
    	
    	int ans=0;
    	For(i,len)
    	{
    		ans+=p[p2+i-1].second+p[p2-i].second;
    	}
    	
    	int l=p2-len,r=p2+len-1;
    	if (l==1&&r<n) ans+=p[r+1].second;
    	if (r==n&&l>1) ans+=p[l-1].second;
    	if (l>1&&r<n) ans+=max(p[l-1].second,p[r+1].second);
    	
    	
    	cout<<ans<<endl;
    	
    	return 0;
    }
    



  • 相关阅读:
    window.location.href的使用方法
    hdu 2850 Load Balancing (优先队列 + 贪心)
    几种常见模式识别算法整理和总结
    【DateStructure】 Charnming usages of Map collection in Java
    编写你自己的单点登录(SSO)服务
    微软历史最高市值是多少?
    Tomcat配置一个ip绑定多个域名
    递归算法:求序列的全排列
    SMTP协议分析
    platform_device与platform_driver
  • 原文地址:https://www.cnblogs.com/gavanwanggw/p/7048363.html
Copyright © 2011-2022 走看看