题目链接:
http://poj.org/problem?id=2773
题目大意:
给你两个整数N和K。找到第k个与N互素的数(互素的数从小到大排列)。当中
(1 <= m <= 1000000,1 <= K <= 100000000 )。
解题思路:
K非常大,直接从小到大枚举找出不现实,仅仅能二分答案。二分枚举[1。INF]范围内全部的数x,
找到1~x范围内与N互素的数个数。假设等于K,则就是结果。
然后考虑1~x范围内与N互素的数个数 = x - 1~x范围内与N不互素的数个数
1~x范围内与N不互素的数个数用简单的容斥定理来求就可以。
AC代码:
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> #define LL __int64 using namespace std; const LL INF = 0xfffffff0; int Prime[1000010],ct,N; void Divide() { ct = 0; int n = N; for(int i = 2; i <= sqrt(n*1.0); ++i) { if(n % i == 0) { Prime[ct++] = i; while(n % i == 0) n /= i; } } if(n != 1) Prime[ct++] = n; } LL Solve(int n) { LL ans = 0; for(int i = 1; i < (1 << ct); ++i) { LL odd = 0; LL tmp = 1; for(int j = 0; j < ct; ++j) { if((1 << j) & i) { odd++; tmp *= Prime[j]; } } if(odd & 1) ans += n/tmp; else ans -= n/tmp; } return n - ans; } int main() { int K; while(~scanf("%d%d",&N,&K)) { Divide(); LL Left = 1, Right = INF, Mid, tmp; while(Left < Right) //二分答案 { Mid = (Left + Right) >> 1; tmp = Solve(Mid); if(tmp >= K) Right = Mid; else Left = Mid + 1; } printf("%I64d ",Left); } return 0; }