zoukankan      html  css  js  c++  java
  • hdu3076--ssworld VS DDD(概率dp第三弹,求概率)

    ssworld VS DDD

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 1487    Accepted Submission(s): 304


    Problem Description
    One day, sssworld and DDD play games together, but there are some special rules in this games.
    They both have their own HP. Each round they dice respectively and get the points P1 and P2 (1 <= P1, P2 <= 6). Small number who, whose HP to reduce 1, the same points will remain unchanged. If one of them becomes 0 HP, he loses. 
    As a result of technical differences between the two, each person has different probability of throwing 1, 2, 3, 4, 5, 6. So we couldn’t predict who the final winner. 

     


     

    Input
    There are multiple test cases.
    For each case, the first line are two integer HP1, HP2 (1 <= HP1, HP2 <= 2000), said the first player sssworld’s HP and the second player DDD’s HP. 
    The next two lines each have six floating-point numbers per line. The jth number on the ith line means the the probability of the ith player gets point j. The input data ensures that the game always has an end. 
     


     

    Output
    One float with six digits after point, indicate the probability sssworld won the game.
     


     

    Sample Input
    5 5 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 5 5 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
     


     

    Sample Output
    0.000000 1.000000
     


     

    Source
    2009 Multi-University Training Contest 17 - Host by NUDT

    求概率。和求期望的方法同样,只是不用再+1,dp[i][j]表示a有i血量,b有j血量时a赢的概率,由于要求a赢的概率。所以在dp[i][0]a赢得概率是1,dp[0][j]时a赢的概率是0。

    一个坑点。血量是倒着输入的。

    。。。坑了一天。。。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int hp1 , hp2 ;
    double dp[2][2100] ;
    double a , b , p ;
    double ka[10] , kb[10] ;
    int main()
    {
        int i , j , flag ;
        while(scanf("%d %d", &hp2, &hp1)!=EOF)
        {
            for(i = 1 ; i <= 6 ; i++)
                scanf("%lf", &ka[i]);
            for(j = 1 ; j <= 6 ; j++)
                scanf("%lf", &kb[j]);
            memset(dp,0,sizeof(dp));
            a = b = p = 0.0 ;
            for(i = 1 ; i <= 6 ; i++)
                for(j = 1 ; j <= 6 ; j++)
                {
                    if(i > j)
                        a += ka[i]*kb[j] ;
                    else if( i < j )
                        b += ka[i]*kb[j] ;
                    else
                        p += ka[i]*kb[j] ;
                }
            dp[0][0] = dp[1][0] = 1.0 ;
            flag = 0 ;
            for(i = 1 ; i <= hp1 ; i++)
            {
                flag = 1 - flag ;
                for(j = 0 ; j <= hp2 ; j++)
                {
                    if( j == 0 ) continue ;
                    dp[flag][j] = ( a*dp[flag][j-1] + b*dp[1-flag][j] ) / (1.0-p) ;
                }
            }
            printf("%.6lf
    ", dp[flag][hp2]);
        }
        return 0;
    }
    

  • 相关阅读:
    【数据结构栈应用系列】括号匹配
    【二叉树系列】二叉树课程大作业
    Tomcat在Linux上的安装与配置
    索引介绍及创建与删除索引
    Java 内存溢出(java.lang.OutOfMemoryError)的常见情况和处理方式总结
    Tomcat的配置文件server.xml叙述
    问题及解决方法
    Oracle DB 查看预警日志
    报表简介
    Nginx负载均衡与反向代理—《亿级流量网站架构核心技术》
  • 原文地址:https://www.cnblogs.com/gavanwanggw/p/7246385.html
Copyright © 2011-2022 走看看