zoukankan      html  css  js  c++  java
  • A. Sorting Railway Cars

    A. Sorting Railway Cars
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    An infinitely long railway has a train consisting of n cars, numbered from 1 to n (the numbers of all the cars are distinct) and positioned in arbitrary order. David Blaine wants to sort the railway cars in the order of increasing numbers. In one move he can make one of the cars disappear from its place and teleport it either to the beginning of the train, or to the end of the train, at his desire. What is the minimum number of actions David Blaine needs to perform in order to sort the train?

    Input

    The first line of the input contains integer n (1 ≤ n ≤ 100 000) — the number of cars in the train.

    The second line contains n integers pi (1 ≤ pi ≤ npi ≠ pj if i ≠ j) — the sequence of the numbers of the cars in the train.

    Output

    Print a single integer — the minimum number of actions needed to sort the railway cars.

    Examples
    input
    5
    4 1 2 5 3
    output
    2
    input
    4
    4 1 3 2
    output
    2
    Note

    In the first sample you need first to teleport the 4-th car, and then the 5-th car to the end of the train.


    大意:有n个数字组成的序列,每次可以把序列中的某个数放到开头或者尾部,问最少需要多少次操作才能使序列从小到大排列

    分析:我们只需要找到最大的一段不需要移动的序列//即连续的差1的序列  就可以用n-ans得到答案

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define maxn 100005
    using namespace std;
    
    int max(int a,int b)
    {
        if(a>b)return a;
        else return b;
    }
    
    int main()
    {
        int n;
        cin>>n;
        int pos[maxn],a[maxn];
        for(int i=1;i<=n;++i)
        {
            scanf("%d",&a[i]);
            pos[a[i]]=i;
        }
        int cnt=1,ans=1;
        for(int i=2;i<=n;++i)
        { 
            if(pos[i]>pos[i-1])cnt++;
            else cnt=1;
            ans=max(ans,cnt);
        }
        cout<<n-ans;
        puts("");
        return 0;
    }
    View Code
  • 相关阅读:
    27 Spring Cloud Feign整合Hystrix实现容错处理
    26 Spring Cloud使用Hystrix实现容错处理
    25 Spring Cloud Hystrix缓存与合并请求
    24 Spring Cloud Hystrix资源隔离策略(线程、信号量)
    23 Spring Cloud Hystrix(熔断器)介绍及使用
    22 Spring Cloud Feign的自定义配置及使用
    21 Spring Cloud使用Feign调用服务接口
    20 Spring Cloud Ribbon配置详解
    19 Spring Cloud Ribbon自定义负载均衡策略
    18 Spring Cloud Ribbon负载均衡策略介绍
  • 原文地址:https://www.cnblogs.com/gc812/p/5913930.html
Copyright © 2011-2022 走看看