zoukankan      html  css  js  c++  java
  • HDU1018 Big Number n!的位数

    Big Number

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 31053 Accepted Submission(s): 14398


    Problem Description
    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

    Input
    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.

    Output
    The output contains the number of digits in the factorial of the integers appearing in the input.

    Sample Input
    2 10 20

    Sample Output
    7 19
    一个整数n的位数:log10(n)+1
    此题答案为:log10(n!)+1.
    log(n!)=log(n)+log(n-1)+log(n-2).....+log(1)
    #include <stdio.h>
    #include <string.h>
    #include <math.h>
    #include <algorithm>
    using namespace std;
    
    int main()
    {
        int i,j,n,T,res;
        double t;
        scanf("%d",&T);
        while(T--){
            scanf("%d",&n);
            t=0;
            for(i=1;i<=n;i++)
                t+=log10(i);
            res=(int)t+1;
            printf("%d
    ",res);
        }
        return 0;
    }
    


  • 相关阅读:
    第一周作业
    第八周作业
    第七周作业
    第五周作业
    第四周作业
    第三周作业
    第二周作业(markdown版本)
    第一周作业
    第六次作业
    第五周作业
  • 原文地址:https://www.cnblogs.com/gccbuaa/p/6869580.html
Copyright © 2011-2022 走看看