zoukankan      html  css  js  c++  java
  • HDU1018 Big Number n!的位数

    Big Number

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 31053 Accepted Submission(s): 14398


    Problem Description
    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

    Input
    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.

    Output
    The output contains the number of digits in the factorial of the integers appearing in the input.

    Sample Input
    2 10 20

    Sample Output
    7 19
    一个整数n的位数:log10(n)+1
    此题答案为:log10(n!)+1.
    log(n!)=log(n)+log(n-1)+log(n-2).....+log(1)
    #include <stdio.h>
    #include <string.h>
    #include <math.h>
    #include <algorithm>
    using namespace std;
    
    int main()
    {
        int i,j,n,T,res;
        double t;
        scanf("%d",&T);
        while(T--){
            scanf("%d",&n);
            t=0;
            for(i=1;i<=n;i++)
                t+=log10(i);
            res=(int)t+1;
            printf("%d
    ",res);
        }
        return 0;
    }
    


  • 相关阅读:
    关于data初始化值
    switch的优化替代写法
    phpstorm安装xdebug
    如何将一个列表封装为一个树形结构
    Win10系统桌面图标距离间距变大的问题
    cnpm无法加载文件的问题
    0、springboot
    1、springboot2新建web项目
    Game游戏分析
    netty学习
  • 原文地址:https://www.cnblogs.com/gccbuaa/p/6869580.html
Copyright © 2011-2022 走看看