zoukankan      html  css  js  c++  java
  • Codeforces 550D. Regular Bridge 构造


    求一个图,每一个点的度数都为K并且必须至少要有一个桥.

    构造题:

    仅仅有k为奇数的时候有解, 构造这种一个图,左边一团有 k+1 个点 , 右边一团也有 k+1 个点, 中间经过 m1 , m2 连着一个桥.


    假设左右两团是全然图,则每一个点的度数都为k, 如今考虑怎样通过m1,m2连接起来而又不改变度数.


    显然这个图是对称的,仅仅考虑左边和点m1,m1和m2是一个桥,要连一条边,m1 和左边的团某个点A要连在一起,又要连一条边,这时A点的度数多了,要和团里的其它点B断掉一条边,为了保持B的度数不变,B再连一条边到m1,这时m1的度就至少为3了,然后将m1的度补全. 每次从左边团中删掉一条边,然后将这条边的两个点连到m1上就能够了.m1的度每次添加2,所以假设k为奇数的话都能够用这个方案构造出来.



    D. Regular Bridge
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    An undirected graph is called k-regular, if the degrees of all its vertices are equal k. An edge of a connected graph is called a bridge, if after removing it the graph is being split into two connected components.

    Build a connected undirected k-regular graph containing at least one bridge, or else state that such graph doesn't exist.

    Input

    The single line of the input contains integer k (1 ≤ k ≤ 100) — the required degree of the vertices of the regular graph.

    Output

    Print "NO" (without quotes), if such graph doesn't exist.

    Otherwise, print "YES" in the first line and the description of any suitable graph in the next lines.

    The description of the made graph must start with numbers n and m — the number of vertices and edges respectively.

    Each of the next m lines must contain two integers, a and b (1 ≤ a, b ≤ na ≠ b), that mean that there is an edge connecting the vertices aand b. A graph shouldn't contain multiple edges and edges that lead from a vertex to itself. A graph must be connected, the degrees of all vertices of the graph must be equal k. At least one edge of the graph must be a bridge. You can print the edges of the graph in any order. You can print the ends of each edge in any order.

    The constructed graph must contain at most 106 vertices and 106 edges (it is guaranteed that if at least one graph that meets the requirements exists, then there also exists the graph with at most 106 vertices and at most 106 edges).

    Sample test(s)
    input
    1
    
    output
    YES
    2 1
    1 2
    
    Note

    In the sample from the statement there is a suitable graph consisting of two vertices, connected by a single edge.



    import java.util.*;
    import java.math.*;
    
    public class Main
    {
    	int k,midl,midr;
    	boolean[][] edge = new boolean[330][330];
    	boolean[] used = new boolean[330];
    
    	void cut_and_link(int from,int to,int goal)
    	{
    		int tk=k-3;
    		while(tk>0)
    		{
    			boolean flag=false;
    			for(int i=from;i<to&&flag==false;i++)
    			{
    				if(used[i]==true) continue;
    				for(int j=i+1;j<to;j++)
    				{
    					if(i==2*k+4||i==4+k||i==1+k||i==1) continue;
    					if(j==2*k+4||j==4+k||j==1+k||j==1) continue;
    					if(used[j]==true) continue;
    					if(edge[i][j]==true)
    					{
    						used[i]=used[j]=true;
    						//cut
    						edge[i][j]=edge[j][i]=false;
    						//link
    						edge[i][goal]=edge[goal][i]=true;
    						edge[j][goal]=edge[goal][j]=true;
    
    						// flag
    						flag=true;
    						break;
    					}
    				}
    			}
    			tk-=2;
    		}
    	}
    
    	void build_tuan(int from ,int to)
    	{
    		for(int i=from;i<=to;i++)
    		{
    			for(int j=i+1;j<=to;j++)
    			{
    				edge[i][j]=edge[j][i]=true;
    			}
    		}
    
    	}
    
    	void sovle(int k)
    	{
    		midl=k+2; midr=k+3;
    
    		build_tuan(1,k+1);
    
    		edge[1][midl]=edge[midl][1]=true;
    		edge[1][k+1]=edge[k+1][1]=false;
    		edge[k+1][midl]=edge[midl][k+1]=true;	
    
    		cut_and_link(2,k+1,midl);
    
    		edge[midl][midr]=edge[midr][midl]=true;
    
    		build_tuan(k+4,2*k+4);
    
    		edge[2*k+4][midr]=edge[midr][2*k+4]=true;
    		edge[k+4][2*k+4]=edge[2*k+4][k+4]=false;
    		edge[k+4][midr]=edge[midr][k+4]=true;
    
    		cut_and_link(k+4,2*k+4,midr);
    	}
    
    	Main()
    	{
    		Scanner in = new Scanner(System.in);
    		k=in.nextInt();
    		if(k%2==0)
    		{
    			System.out.println("No");
    			return ;
    		}
    		System.out.println("Yes");
    		if(k==1)
    		{
    			System.out.println("2 1
    1 2");
    		}
    		else
    		{
    			sovle(k);
    			int num=2*k+4,cnt=0;
    			for(int i=1;i<=num;i++)
    				for(int j=i+1;j<=num;j++)
    					if(edge[i][j]) cnt++;
    			System.out.printf("%d %d
    ",num,cnt);
    			for(int i=1;i<=num;i++)
    			{
    				for(int j=i+1;j<=num;j++)
    				{
    					if(edge[i][j])
    					{
    						System.out.printf("%d %d
    ",i,j);
    					}
    				}
    			}
    		}
    	}
    	public static void main(String[] args)
    	{
    		new Main();
    	}
    }
    



  • 相关阅读:
    Framework not found Reveal
    iOS 数字每隔3位用逗号分隔
    iOS 常见内存泄漏--项目实遇
    iOS面试的一个逻辑题
    iOS 视频直播弹幕的实现
    好好写博客,不再划水喊口号
    【计你太美】一句代码实现微博兴趣页的自动跳转
    【Auto.js教程】Auto.js强制关闭软件函数
    【Auto.js教程】Auto.js入门及第一个示例程序
    mysql中的join
  • 原文地址:https://www.cnblogs.com/gccbuaa/p/6957388.html
Copyright © 2011-2022 走看看