- 题意:
每次给一个n。求
(2≤n<10500)
- 分析:
先说一下自己的想法,假设将n换成二进制数,也就一两千位左右,那么一位一位处理是能够接受的。将0-n写成二进制形式后,显然全部数某一个二进制位是有一个循环节的。那么我们就能够从这里入手直接求解
import java.io.*; import java.math.*; import java.util.*; public class Main { public static BigInteger zero = BigInteger.ZERO; public static BigInteger one = BigInteger.ONE; public static BigInteger two = BigInteger.valueOf(2); public static BigInteger three = BigInteger.valueOf(3); public static BigInteger four = BigInteger.valueOf(4); public static BigInteger six = BigInteger.valueOf(6); public static BigInteger Down(BigInteger now, BigInteger L) { BigInteger mid = now.divide(L).multiply(L).add(L.shiftRight(1)); if (now.subtract(mid).signum() < 0) return mid; return mid.add(L.shiftRight(1)); } public static BigInteger Up(BigInteger now, BigInteger L) { BigInteger start = now.divide(L).multiply(L); BigInteger mid = start.add(L.shiftRight(1)); if (now.subtract(mid).signum() < 0) return start.subtract(one); return mid.subtract(one); } public static int getValue(BigInteger now, BigInteger L) { BigInteger mid = now.divide(L).multiply(L).add(L.shiftRight(1)); if (now.subtract(mid).signum() < 0) return 0; return 1; } public static BigInteger solve(BigInteger nl, BigInteger nr, BigInteger gl, BigInteger L) { BigInteger ret = zero, step = Down(nl, L).subtract(nl), t = nr.subtract(Up(nr, L)); if (step.subtract(t).signum() > 0) step = t; while (nl.add(step).subtract(gl).signum() <= 0) { if ((getValue(nl, L) ^ getValue(nr, L)) == 1) ret = ret.add(step); nl = nl.add(step); nr = nr.subtract(step); step = Down(nl, L).subtract(nl); t = nr.subtract(Up(nr, L)); if (step.subtract(t).signum() > 0) step = t; } if (gl.subtract(nl).add(one).signum() >= 0 && (getValue(nl, L) ^ getValue(nr, L)) == 1) ret = ret.add(gl.subtract(nl).add(one)); return ret; } public static void main(String[] args) { BigInteger n, L, tans, nl, ans; Scanner cin = new Scanner(System.in); while (cin.hasNext()) { n = cin.nextBigInteger(); L = two; ans = zero; while (L.subtract(n.shiftLeft(1)).signum() <= 0)//(L <= n * 2) { tans = zero; if (n.divide(L).shiftRight(1).signum() > 0) { tans = solve(zero, n, L.subtract(one), L); } nl = n.divide(L).shiftRight(1).multiply(L); tans = n.divide(L).shiftRight(1).multiply(tans).add(solve(nl, n.subtract(nl), n.subtract(one).shiftRight(1), L)); ans = ans.add(tans.multiply(L)); L = L.shiftLeft(1); } System.out.println(ans.subtract(n.shiftLeft(1))); } } }
学习一下题解的方法。关键在于:(2 * k) ^ x = (2 * k + 1) ^ x
之后就学习一下题解的公式化简方法了
import java.util.*; import java.math.*; public class Main { static BigInteger n, ret; static BigInteger one = BigInteger.valueOf(1); static BigInteger two = BigInteger.valueOf(2); static BigInteger four = BigInteger.valueOf(4); static BigInteger six = BigInteger.valueOf(6); static HashMap<BigInteger, BigInteger> mp = new HashMap<BigInteger, BigInteger>(); public static BigInteger fun(BigInteger n) { if (n.equals(BigInteger.ZERO) || n.equals(BigInteger.ONE)) return BigInteger.ZERO; if (mp.containsKey(n)) return mp.get(n); BigInteger k = n.shiftRight(1); if (n.testBit(0)) { ret = four.multiply(fun(k)).add(six.multiply(k)); mp.put(n, ret); return ret; } else { ret = (fun(k).add(fun(k.subtract(one))).add(k.shiftLeft(1)).subtract(two)).shiftLeft(1); mp.put(n, ret); return ret; } } public static void main(String[] args) { Scanner cin = new Scanner(System.in); while (cin.hasNext()) { n = cin.nextBigInteger(); mp.clear(); System.out.println(fun(n)); } } }