zoukankan      html  css  js  c++  java
  • zoj1942Frogger

    Frogger

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 

    Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 

    To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
    The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

    You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.


    Input

    The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2 <= n <= 200). The next n lines each contain two integers xi, yi (0 <= xi, yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.


    Output

    For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.


    Sample Input

    2
    0 0
    3 4

    3
    17 4
    19 4
    18 5

    0


    Sample Output

    Scenario #1
    Frog Distance = 5.000

    Scenario #2

    Frog Distance = 1.414

    就是说公青蛙和母青蛙都在一棵树上时,求当前树上的最大边;最小生成树,最后用并查集思想过。

    附ac代码:

       #include<stdio.h>
       #include<string.h>
       #include<algorithm>
       #include<math.h>
       using namespace std;
       int per[220000];
       struct node
       {
       	int start;
       	int end;
       	double dis;
       }t[200100];
       int cmp(node a,node b)
       {
       	return a.dis < b.dis ;
       }
       int find(int x)
       {
       	int r=x;
       	while(r!=per[r])
       	r=per[r];
       	return r;
       }
       int join(int x,int y)
       {
       	int fx=find(x);
       	int fy=find(y);
       	if(fx!=fy)
       	{
       		per[fx]=fy;
       		return 1;
       	 } 
       	 return 0;
       }
       int main()
       {
       	int i,n,j;
       	int flag=1;
       	double x[110000],y[110000];
       	while(scanf("%d",&n),n)
       	{
       		for(i=0;i<220000;i++)
       		per[i]=i;
       		for(i=1;i<=n;i++)
       		scanf("%lf%lf",&x[i],&y[i]);
       		int k=0;
       		for(i=1;i<=n;i++)
       		for(j=i+1;j<=n;j++)
       		{
       			t[k].start = i;
       			t[k].end = j;
       			t[k].dis =sqrt(((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]))*1.0);
       			k++;
       		}
       		sort(t,t+k,cmp);
       		double ans=0.0;
       		int a=0;
       		int b=0;
       		for(i=0;i<k;i++)
       		{
       			if(join(t[i].start,t[i].end))
       			{
       			/*if(ans<t[i].dis)
       			ans=t[i].dis;
       			if(x[t[i].start]==x[1]&&y[t[i].end]==y[1])
       			a=1;
       			if(x[t[i].start]==x[1]&&y[t[i].end]==y[1])
       			b=1;
       			if(a==1&&b==1)*/
    			if(find(1)==find(2))//公青蛙和母青蛙,在同一颗树上, 
    			{
    			ans=t[i].dis;//按顺序加的边,当前边一定是所成树的最大边 
       			break;
       			}
       			}
       		}
       		printf("Scenario #%d
    ",flag);
       		printf("Frog Distance = %.3f
    
    ",ans);
       		flag++;
       	}
       	return 0;
       }


  • 相关阅读:
    oracle中rownum和rowid的区别和用法
    jsp中,对window对象的简单总结
    下拉列表框实现二级联动
    window.showModalDialog()的简单用法
    javascript中的正则表达式
    java实现树型结构样式
    几个数据库的驱动、连接
    Java桌面程序中设置一个软件的系统托盘
    【动态规划】求两字符串连续最大公共子串长度
    大整数相乘
  • 原文地址:https://www.cnblogs.com/gccbuaa/p/7019987.html
Copyright © 2011-2022 走看看