zoukankan      html  css  js  c++  java
  • HDU-4249-A Famous Equation(DP)

    Problem Description
    Mr. B writes an addition equation such as 123+321=444 on the blackboard after class. Mr. G removes some of the digits and makes it look like “1?3+??1=44?”. Here “?” denotes removed digits. After Mr. B realizes some digits are missing, he wants to recover them. Unfortunately, there may be more than one way to complete the equation. For example “1?3+??1=44?” can be completed to “123+321=444” , “143+301=444” and many other possible solutions. Your job is to determine the number of different possible solutions.
     

    Input
    Each test case describes a single line with an equation like a+b=c which contains exactly one plus sign “+” and one equal sign “=” with some question mark “?” represent missing digits. You may assume a, b and c are non-negative integers, and the length of each number is no more than 9. In the other words, the equation will contain three integers less than 1,000,000,000.
     

    Output
    For each test case, display a single line with its case number and the number of possible solutions to recover the equation.
     

    Sample Input
    7+1?=1? ?

    1+?1=22

     

    Sample Output
    Case 1: 3 Case 2: 1
    Hint
    There are three solutions for the first case: 7+10=17, 7+11=18, 7+12=19 There is only one solution for the second case: 11+11=22 Note that 01+21=22 is not a valid solution because extra leading zeros are not allowed.
     

    Source
     

    思路:dp[i][0]表示从右往左第i位不进位的方法数,dp[i][1]表示进位的方法数。

    坑点:①long long。

    ②前导零。③1+1=2这样的情况结果为1。加特判还WA了。④细节。


    代码写得太挫,还是贴上来吧。


    #include<stdio.h>
    #include<string.h>
    
    char a[50],b[50],c[50],s[100];
    long long dp[10][2];
    
    int main()
    {
        int la,lb,lc,i,j,k,now,p,q,jp,jq,cas=1;
    
        while(~scanf("%s",s))
        {
            for(i=0;s[i];i++) if(s[i]=='+' || s[i]=='=') s[i]=' ';
    
            sscanf(s,"%s%s%s",a,b,c);
    
            la=strlen(a)-1;
            lb=strlen(b)-1;
            lc=strlen(c)-1;
    
            dp[0][0]=1;
            dp[0][1]=0;
    
            now=1;
    
            while(la>=0 || lb>=0 || lc>=0)
            {
                p=q=jp=jq=0;
    
                if(la>=0 && a[la]=='?

    ') { for(i=0;i<=9;i++) { if(!la && now>1 && !i) continue; if(lb>=0 && b[lb]=='?') { for(j=0;j<=9;j++) { if(!lb && now>1 && !j) continue; if(lc>=0 && c[lc]=='?') { for(k=0;k<=9;k++) { if(!lc && now>1 && !k) continue; if(i+j==k) p++; if(i+j==k-1) jp++; if(i+j-10==k) q++; if(i+j-10==k-1) jq++; } } else { if(lc>=0) k=c[lc]-'0'; else k=0; if(i+j==k) p++; if(i+j==k-1) jp++; if(i+j-10==k) q++; if(i+j-10==k-1) jq++; } } } else { if(lb>=0) j=b[lb]-'0'; else j=0; if(lc>=0 && c[lc]=='?') { for(k=0;k<=9;k++) { if(!lc && now>1 && !k) continue; if(i+j==k) p++; if(i+j==k-1) jp++; if(i+j-10==k) q++; if(i+j-10==k-1) jq++; } } else { if(lc>=0) k=c[lc]-'0'; else k=0; if(i+j==k) p++; if(i+j==k-1) jp++; if(i+j-10==k) q++; if(i+j-10==k-1) jq++; } } } } else { if(la>=0) i=a[la]-'0'; else i=0; if(lb>=0 && b[lb]=='?') { for(j=0;j<=9;j++) { if(!lb && now>1 && !j) continue; if(lc>=0 && c[lc]=='?') { for(k=0;k<=9;k++) { if(!lc && now>1 && !k) continue; if(i+j==k) p++; if(i+j==k-1) jp++; if(i+j-10==k) q++; if(i+j-10==k-1) jq++; } } else { if(lc>=0) k=c[lc]-'0'; else k=0; if(i+j==k) p++; if(i+j==k-1) jp++; if(i+j-10==k) q++; if(i+j-10==k-1) jq++; } } } else { if(lb>=0) j=b[lb]-'0'; else j=0; if(lc>=0 && c[lc]=='?') { for(k=0;k<=9;k++) { if(!lc && now>1 && !k) continue; if(i+j==k) p++; if(i+j==k-1) jp++; if(i+j-10==k) q++; if(i+j-10==k-1) jq++; } } else { if(lc>=0) k=c[lc]-'0'; else k=0; if(i+j==k) p++; if(i+j==k-1) jp++; if(i+j-10==k) q++; if(i+j-10==k-1) jq++; } } } dp[now][0]=dp[now-1][0]*p+dp[now-1][1]*jp; dp[now][1]=dp[now-1][0]*q+dp[now-1][1]*jq; now++; la--; lb--; lc--; } printf("Case %d: %I64d ",cas++,dp[now-1][0]); } }



    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    js 数组分解 解构
    js math 对数和指数处理 expm1 log1p
    highcharts 坐标轴 数值 格式化
    libvirt-qemu-虚拟机设备热插拔
    Linux设备驱动程序加载/卸载方法 insmod和modprobe命令
    mount、umount、fuser命令使用小结
    Linux安全策略配置-pam_tally2身份验证模块
    python处理时间相关的方法
    python中命令行参数
    linux---(6/27)tr命令和sed命令详解
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4709055.html
Copyright © 2011-2022 走看看