zoukankan      html  css  js  c++  java
  • SICP 锻炼 (1.40)解决摘要

    SICP 锻炼1.40 是一个休闲的工作非常easy,但它看起来很复杂,单的一道题。


    题目原题例如以下:

    请定义一个过程cubic, 它和newtons-method过程一起使用在以下形式的表达式里:

    (newtons-method (cubic a b c) 1)

    能逼进三次方程


    的零点。


    题干是非常easy,就要求我们做个cubic过程,只是里面涉及newtons-method和三次方程的零点,假设仅仅看题目的话真不知道从哪里下手。


    要完毕这道题,先得回去把书中得newtons-method过一遍,书中的newtons-method定义例如以下:


    (define (newtons-method g guess)
      (fixed-point (newton-transform g) guess))



    事实上就是求newton-transform的不动点。


    那么这个newton-transform,就是牛顿变换又是什么呢?


    书中的newton-transform定义例如以下:


    (define (newton-transform g)
      (lambda (x)
        (- x (/ (g x) ((deriv g) x)))))



    它的作用就是得出f(x),使f(x)例如以下:

    f(x)= x - g(x) / Dg(x)



    如书中1.3.4节介绍牛顿法时描写叙述的:


    假设x-> g(x)是一个可微函数,那么方程g(x)=0 的一个解就是函数x->f(x)的一个不动点。当中f(x)= x - g(x) / Dg(x)


    好,回到我们的题目,我们有一个函数

    g(x)= 


    我们要逼进函数g(x)的零点,就是求g(x)=0的一个解。

    按以上的描写叙述,就是我们要求(newtons-method <g(x)> 1)。注意这里不是一个合法的Scheme语句。


    这里的g(x)就是我们要做的cubic过程的返回值。


    问题到了这里就变得非常easy了,只是是用cubic过程去生成一个表示三次方程的lambda过程而已,cubic过程定义例如以下:

    (define (cubic a b c) 
      (lambda (x)
        (+ (* x x x) (* a x x) (* b x) c)))

    是不是结果有点出乎意料的简单呢?




    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    Cookie、LocalStorge、SesstionStorge 的区别和用法
    JavaScript奇技淫巧44招
    js中callee与caller的区别
    两个示例介绍JavaScript的闭包
    js 判断url的?后参数是否包含某个字符串
    js实现输入验证码
    js关于DOM和BOM
    HTTP 协议
    HTML CSS JS 的初识
    异步函数
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4734386.html
Copyright © 2011-2022 走看看