zoukankan      html  css  js  c++  java
  • c语言bit倒置最好的算法-离msb-lsb至lsb-msb

    问题

    什么是例如最好的算法,下面的转换?

    0010 0000 => 0000 0100
    

    从详细的转换MSB->LSB至LSB->MSB, 所有的Bit必须扭转,着。这并非字节顺序的交换。

    最佳答案

    注意: 以下的算法都用C实现。但应该能够迁移到其他语言(仅仅是不那么快的时候可别找我)。

    可选方案

    内存占用少(32位int。32位机器)(来源于这里)

    unsigned int
    reverse(register unsigned int x)
    {
        x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
        x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
        x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
        x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
        return((x >> 16) | (x << 16));
    }
    

    最快(查找表)

    static const unsigned char BitReverseTable256[] = 
    {
      0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 
      0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 
      0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 
      0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 
      0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 
      0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
      0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 
      0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
      0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
      0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 
      0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
      0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
      0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 
      0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
      0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 
      0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
    };
    
    unsigned int v; // reverse 32-bit value, 8 bits at time
    unsigned int c; // c will get v reversed
    
    // Option 1:
    c = (BitReverseTable256[v & 0xff] << 24) | 
        (BitReverseTable256[(v >> 8) & 0xff] << 16) | 
        (BitReverseTable256[(v >> 16) & 0xff] << 8) |
        (BitReverseTable256[(v >> 24) & 0xff]);
    
    // Option 2:
    unsigned char * p = (unsigned char *) &v;
    unsigned char * q = (unsigned char *) &c;
    q[3] = BitReverseTable256[p[0]]; 
    q[2] = BitReverseTable256[p[1]]; 
    q[1] = BitReverseTable256[p[2]]; 
    q[0] = BitReverseTable256[p[3]];
    

    来自于著名的Bit Twiddling Hacks page:

    你能够扩展这个算法到64位int的场景,或者为了更快的速度而牺牲多一些的内存(如果你的L1数据缓存足够大)。有一个64K的查找表且每次反转16位。

    其他方案

    简单

    unsigned int v;     // input bits to be reversed
    unsigned int r = v; // r will be reversed bits of v; first get LSB of v
    int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
    
    for (v >>= 1; v; v >>= 1)
    {   
      r <<= 1;
      r |= v & 1;
      s--;
    }
    r <<= s; // shift when v's highest bits are zero
    

    更快(32位处理器)

    unsigned char b = x;
    b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
    

    更快(64位处理器)

    unsigned char b; // reverse this (8-bit) byte
    b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;
    

    假设你想在32位int环境这样做,那么仅仅须要把每个byte反转,然后再颠倒byte的次序就可以。例如以下:

    unsigned int toReverse;
    unsigned int reversed;
    unsigned char inByte0 = (toReverse & 0xFF);
    unsigned char inByte1 = (toReverse & 0xFF00) >> 8;
    unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;
    unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;
    reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);
    

    结果

    我測试了两个最有效的方案。查找表和按位与(第一个方案)。測试机器为一台笔记本电脑,配置为4G DDR2内存,2.4GHz的双核T7500处理器。4MB的L2缓存。我使用的是gcc 4.3.2。64位Linux。OpenMP(外加GCC绑定)被用来提高计时器的调度能力。

    reverse.c

    #include <stdlib.h>
    #include <stdio.h>
    #include <omp.h>
    
    unsigned int
    reverse(register unsigned int x)
    {
        x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
        x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
        x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
        x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
        return((x >> 16) | (x << 16));
    
    }
    
    int main()
    {
        unsigned int *ints = malloc(100000000*sizeof(unsigned int));
        unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
        for(unsigned int i = 0; i < 100000000; i++)
          ints[i] = rand();
    
        unsigned int *inptr = ints;
        unsigned int *outptr = ints2;
        unsigned int *endptr = ints + 100000000;
        // Starting the time measurement
        double start = omp_get_wtime();
        // Computations to be measured
        while(inptr != endptr)
        {
          (*outptr) = reverse(*inptr);
          inptr++;
          outptr++;
        }
        // Measuring the elapsed time
        double end = omp_get_wtime();
        // Time calculation (in seconds)
        printf("Time: %f seconds
    ", end-start);
    
        free(ints);
        free(ints2);
    
        return 0;
    }
    

    reverse_lookup.c

    #include <stdlib.h>
    #include <stdio.h>
    #include <omp.h>
    
    static const unsigned char BitReverseTable256[] = 
    {
      0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 
      0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 
      0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 
      0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 
      0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 
      0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
      0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 
      0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
      0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
      0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 
      0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
      0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
      0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 
      0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
      0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 
      0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
    };
    
    int main()
    {
        unsigned int *ints = malloc(100000000*sizeof(unsigned int));
        unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
        for(unsigned int i = 0; i < 100000000; i++)
          ints[i] = rand();
    
        unsigned int *inptr = ints;
        unsigned int *outptr = ints2;
        unsigned int *endptr = ints + 100000000;
        // Starting the time measurement
        double start = omp_get_wtime();
        // Computations to be measured
        while(inptr != endptr)
        {
        unsigned int in = *inptr;
    
        // Option 1:
        //*outptr = (BitReverseTable256[in & 0xff] << 24) | 
        //    (BitReverseTable256[(in >> 8) & 0xff] << 16) | 
        //    (BitReverseTable256[(in >> 16) & 0xff] << 8) |
        //    (BitReverseTable256[(in >> 24) & 0xff]);
    
        // Option 2:
        unsigned char * p = (unsigned char *) &(*inptr);
        unsigned char * q = (unsigned char *) &(*outptr);
        q[3] = BitReverseTable256[p[0]]; 
        q[2] = BitReverseTable256[p[1]]; 
        q[1] = BitReverseTable256[p[2]]; 
        q[0] = BitReverseTable256[p[3]];
    
          inptr++;
          outptr++;
        }
        // Measuring the elapsed time
        double end = omp_get_wtime();
        // Time calculation (in seconds)
        printf("Time: %f seconds
    ", end-start);
    
        free(ints);
        free(ints2);
    
        return 0;
    }
    

    在不同的优化级别(Optimizations),两个方案我都尝试了。每一个级别跑3个案例,每一个案例反转1亿个随机的无符号整数。

    对于查找表方案。bitwise hacks page上面的两种方法(Option 1 and Option 2)我都測试过。

    结果例如以下:

    按位与

    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.c
    mrj10@mjlap:~/code$ ./reverse
    Time: 2.000593 seconds
    mrj10@mjlap:~/code$ ./reverse
    Time: 1.938893 seconds
    mrj10@mjlap:~/code$ ./reverse
    Time: 1.936365 seconds
    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.c
    mrj10@mjlap:~/code$ ./reverse
    Time: 0.942709 seconds
    mrj10@mjlap:~/code$ ./reverse
    Time: 0.991104 seconds
    mrj10@mjlap:~/code$ ./reverse
    Time: 0.947203 seconds
    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.c
    mrj10@mjlap:~/code$ ./reverse
    Time: 0.922639 seconds
    mrj10@mjlap:~/code$ ./reverse
    Time: 0.892372 seconds
    mrj10@mjlap:~/code$ ./reverse
    Time: 0.891688 seconds
    

    查找表(Option 1)

    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.201127 seconds              
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.196129 seconds              
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.235972 seconds              
    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 0.633042 seconds              
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 0.655880 seconds              
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 0.633390 seconds              
    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 0.652322 seconds              
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 0.631739 seconds              
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 0.652431 seconds
    

    查找表(Option 2)

    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.671537 seconds
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.688173 seconds
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.664662 seconds
    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.049851 seconds
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.048403 seconds
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.085086 seconds
    mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.082223 seconds
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.053431 seconds
    mrj10@mjlap:~/code$ ./reverse_lookup
    Time: 1.081224 seconds
    

    结论

    假设你比較在意性能,那么使用查找表Option 1(Byte的寻址不出意外的慢)。

    假设你须要尽可能的利用完每个Byte内存(且你也在意bit反转的性能),那么优化后的按位与方案也还不赖。

    附加说明

    我知道上面的代码仅仅是一个粗略的版本号,很欢迎大家提供一些优化的建议。下面是我知道的几点:

    • 我没有权限訪问ICC,那可能更快些(假设你能够測试请在评论中回复)。

    • 在一些L1缓存比較大的现代机器上面。64K的查找表可能工作得更好。
    • -mtune=native对 -O2/-O3(发生符号重定义的错误)无效,所以我不相信产生的代码是为我的微架构而优化。
    • SSE环境下应该有一种方法处理得更快。

      我不知道怎么做,但又更快的内存复制。批量的按位与。调整的指令集, 总是有一些手段的。

    • 我知道只x86的指令集是危急的。以下是GCC在-O3环境产生的代码,所以比我更厉害的大牛能够检查一下。

    32-bit

    .L3:
    movl    (%r12,%rsi), %ecx
    movzbl  %cl, %eax
    movzbl  BitReverseTable256(%rax), %edx
    movl    %ecx, %eax
    shrl    $24, %eax
    mov     %eax, %eax
    movzbl  BitReverseTable256(%rax), %eax
    sall    $24, %edx
    orl     %eax, %edx
    movzbl  %ch, %eax
    shrl    $16, %ecx
    movzbl  BitReverseTable256(%rax), %eax
    movzbl  %cl, %ecx
    sall    $16, %eax
    orl     %eax, %edx
    movzbl  BitReverseTable256(%rcx), %eax
    sall    $8, %eax
    orl     %eax, %edx
    movl    %edx, (%r13,%rsi)
    addq    $4, %rsi
    cmpq    $400000000, %rsi
    jne     .L3
    

    更改: 我也尝试在自己机器上使用uint64,看看是否性能有所提高。

    相对于32-bit性能大概提高了10%。不管你是每次用64-bit类型去反转2个32-bit的int。或者实际上看作64-bit并分两次来反转。性能都大致相当。

    代码例如以下(对于前者。每次反转2个32-bit的int):

    .L3:
    movq    (%r12,%rsi), %rdx
    movq    %rdx, %rax
    shrq    $24, %rax
    andl    $255, %eax
    movzbl  BitReverseTable256(%rax), %ecx
    movzbq  %dl,%rax
    movzbl  BitReverseTable256(%rax), %eax
    salq    $24, %rax
    orq     %rax, %rcx
    movq    %rdx, %rax
    shrq    $56, %rax
    movzbl  BitReverseTable256(%rax), %eax
    salq    $32, %rax
    orq     %rax, %rcx
    movzbl  %dh, %eax
    shrq    $16, %rdx
    movzbl  BitReverseTable256(%rax), %eax
    salq    $16, %rax
    orq     %rax, %rcx
    movzbq  %dl,%rax
    shrq    $16, %rdx
    movzbl  BitReverseTable256(%rax), %eax
    salq    $8, %rax
    orq     %rax, %rcx
    movzbq  %dl,%rax
    shrq    $8, %rdx
    movzbl  BitReverseTable256(%rax), %eax
    salq    $56, %rax
    orq     %rax, %rcx
    movzbq  %dl,%rax
    shrq    $8, %rdx
    movzbl  BitReverseTable256(%rax), %eax
    andl    $255, %edx
    salq    $48, %rax
    orq     %rax, %rcx
    movzbl  BitReverseTable256(%rdx), %eax
    salq    $40, %rax
    orq     %rax, %rcx
    movq    %rcx, (%r13,%rsi)
    addq    $8, %rsi
    cmpq    $400000000, %rsi
    jne     .L3
    

    原文地址

    Stackoverflow

  • 相关阅读:
    Eclipse修改JSP文件的默认编码
    RPM常用命令总结
    软链接的妙用
    多线程练习
    Spring整合struts的配置文件存放问题
    使用struts框架后的404错误
    俄罗斯方块中的编程思想
    引用类型的强制类型转换
    数据库还原的问题
    常用sql语法初级
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4776165.html
Copyright © 2011-2022 走看看